Skip to content
1887

Abstract

The genus comprises 57 species (in February 2024) that are important components of ecosystems and are widely used in biotechnology, especially pharmaceuticals. Phylogenetic analysis of the family (based on the 16S rRNA gene sequence) allowed us to group members of different genera into separate clades; however, the genus was divided into three separate clades. Such phylogenetic heterogeneity could be due to the limitations of 16S rRNA gene analysis. In response to this heterogeneity, genomic phylogeny was performed. Phylogenomic reconstruction based on 324 single-copy orthologous genes allowed us to divide the genus first into four clades and then, based on average nucleotide identity analysis, into five clades. Finally, chemotaxonomic analysis of each clade confirmed each clade’s distinctiveness and the necessity to reclassify the genus . The obtained data allowed us to divide the genus into five genera: , , , and .

Funding
This study was supported by the:
  • Government of Ukraine (Award Н/309-2003)
    • Principle Award Recipient: GromykoOleksandr
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006464
2024-07-24
2025-06-18
Loading full text...

Full text loading...

References

  1. Couch JN. Actinoplanes, a new genus of the Actinomycetales. J Elisha Mitchell Sci Soc 1950; 66:87–92
    [Google Scholar]
  2. Couch JN. Some new genera and species of the Actinoplanaceae. J Elisha Mitchell Sci Soc 1963; 79:53–70
    [Google Scholar]
  3. Kalakutskii LV, Duznetsov VD. Novyi vid roda Actinoplanes Сouch: Actinoplanes armeniacus n. sp., i nekotorye osobennosti ego sporoobrazovaniia [a new species of the genus Actinoplanes Couch: Actinoplanes armeniacus n. sp., and some peculiarities of its spore formation]. Mikrobiologiia 1964; 33:613–621
    [Google Scholar]
  4. Thiemann JE, Beretta G, Coronelli C, Pagani H. Antibiotic production by new form-genera of the Actinomycetales. II. J Antibiot 1969; 22:119–125 [View Article]
    [Google Scholar]
  5. Beretta G. Actinoplanes italicus, a new red-pigmented species. Int J Syst Bacteriol 1973; 23:37–42 [View Article]
    [Google Scholar]
  6. Wellington EM, Williams ST. Transfer of Actinoplanes armeniacus Kalakoutskii and Kusnetsov to Streptomyces: Streptomyces armeniacus (Kalakoutskii and Kusnetsov) comb. nov. Int J Syst Bacteriol 1981; 31:77–81 [View Article]
    [Google Scholar]
  7. Stackebrandt E, Kroppenstedt RM. Union of the genera Actinoplanes Couch, Ampullariella Couch, and Amorphosporangium Couch in a redefined genus Actinoplanes. Syst Appl Microbiol 1987; 9:110–114 [View Article]
    [Google Scholar]
  8. Genus Actinoplanes. n.d https://lpsn.dsmz.de/genus/actinoplanes accessed 25 February 2024
  9. Silva LJ, Crevelin EJ, Souza DT, Lacerda-Júnior GV, de Oliveira VM et al. Actinobacteria from Antarctica as a source for anticancer discovery. Sci Rep 2020; 10: [View Article]
    [Google Scholar]
  10. Phongsopitanun W, Matsumoto A, Inahashi Y, Kudo T, Mori M et al. Actinoplanes lichenis sp. nov., isolated from lichen. Int J Syst Evol Microbiol 2016; 66:468–473 [View Article] [PubMed]
    [Google Scholar]
  11. Saeng-in P, Kanchanasin P, Yuki M, Kudo T, Ohkuma M et al. Actinoplanes lichenicola sp. nov. and Actinoplanes ovalisporus sp. nov., isolated from lichen in Thailand. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  12. Somphong A, Weeraphan T, Poengsungnoen V, Suriyachadkun C, Sripreechasak P et al. Actinoplanes pyxinae sp. nov., a new lichen-derived rare actinobacterium exhibiting antimicrobial and anticancer activity. Int J Syst Evol Microbiol 2024; 74: [View Article] [PubMed]
    [Google Scholar]
  13. Gibu N, Arata T, Kuboki S, Linh DV, Fukuda M et al. Characterization of the genes responsible for rubber degradation in Actinoplanes sp. strain OR16. Appl Microbiol Biotechnol 2020; 104:7367–7376 [View Article] [PubMed]
    [Google Scholar]
  14. Neher BD, Mazzaferro LS, Kotik M, Oyhenart J, Halada P et al. Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids. Appl Microbiol Biotechnol 2015; 100:3061–3070 [View Article] [PubMed]
    [Google Scholar]
  15. Song J, Sun X, Luo X, He C, Huang Z et al. Actinoplanes aureus sp. nov., a novel protease-producing actinobacterium isolated from soil. Antonie van Leeuwenhoek 2021; 114:1517–1527 [View Article] [PubMed]
    [Google Scholar]
  16. Tuyen DT, Yew GY, Cuong NT, Hoang LT, Yen HT et al. Selection, purification, and evaluation of acarbose-an α-glucosidase inhibitor from Actinoplanes sp. Chemosphere 2021; 265:129167 [View Article] [PubMed]
    [Google Scholar]
  17. Yushchuk O, Ostash B, Truman AW, Marinelli F, Fedorenko V. Teicoplanin biosynthesis: unraveling the interplay of structural, regulatory, and resistance genes. Appl Microbiol Biotechnol 2020; 104:3279–3291 [View Article] [PubMed]
    [Google Scholar]
  18. Serra S, Malpezzi L, Bedeschi A, Fuganti C, Fonte P. Final demonstration of the co-identity of lipiarmycin A3 and tiacumicin B (fidaxomicin) through single crystal X-ray analysis. Antibiotics 2017; 6:7 [View Article] [PubMed]
    [Google Scholar]
  19. Caicedo-Montoya C, Gómez-Román MP, Vázquez-Hernández M, Mora-Rincón RA, Rodriguez-Luna SD et al. Evolutionary genomics and biosynthetic potential of novel environmental Actinobacteria. Appl Microbiol Biotechnol 2021; 105:8805–8822 [View Article] [PubMed]
    [Google Scholar]
  20. Oyedoh OP, Yang W, Dhanasekaran D, Santoyo G, Glick BR et al. Rare rhizo-actinomycetes: a new source of agroactive metabolites. Biotechnol Adv 2023; 67:108205 [View Article] [PubMed]
    [Google Scholar]
  21. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016; 80:1–43 [View Article] [PubMed]
    [Google Scholar]
  22. Tamura T, Hatano K. Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and “Actinoplanes aurantiacus” to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol 2001; 51:2119–2125 [View Article]
    [Google Scholar]
  23. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  24. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN:a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2021; 50:D801–D807 [View Article]
    [Google Scholar]
  26. Moretti S, Armougom F, Wallace IM, Higgins DG, Jongeneel CV et al. The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 2007; 35:W645–W648 [View Article] [PubMed]
    [Google Scholar]
  27. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  28. Huelsenbeck JP, Crandall KA. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu Rev Ecol Syst 1997; 28:437–466 [View Article]
    [Google Scholar]
  29. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article]
    [Google Scholar]
  30. Letunic I, Bork P. Interactive tree of life (iTOL) V5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  31. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000; 16:276–277 [View Article] [PubMed]
    [Google Scholar]
  32. Rangwala SH, Kuznetsov A, Ananiev V, Asztalos A, Borodin E et al. Accessing NCBI data using the NCBI sequence viewer and Genome Data Viewer (GDV). Genome Res 2020; 31:159–169 [View Article] [PubMed]
    [Google Scholar]
  33. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): resource combining Patric, IRD and ViPR. Nucleic Acids Res 2022; 51:D678–D689 [View Article]
    [Google Scholar]
  34. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  35. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article]
    [Google Scholar]
  36. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  37. Roman I, Fedorenko V, Gromyko O. Supplementary Material 1. figshare. Dataset 2024 [View Article]
    [Google Scholar]
  38. Rückert C, Szczepanowski R, Albersmeier A, Goesmann A, Fischer N et al. Complete genome sequence of the actinobacterium Actinoplanes friuliensis HAG 010964, producer of the lipopeptide antibiotic friulimycin. J Biotechnol 2014; 178:41–42 [View Article]
    [Google Scholar]
  39. Madhaiyan M, Saravanan VS, See-Too W-S, Volpiano CG, Sant’Anna FH et al. Genomic and phylogenomic insights into the family Streptomycetaceae lead to the proposal of six novel genera. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  40. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  41. Nurkanto A, Lisdiyanti P, Hamada M, Ratnakomala S, Shibata C et al. Actinoplanes tropicalis sp. nov. and Actinoplanes cibodasensis sp. nov., isolated from leaf litter. Int J Syst Evol Microbiol 2015; 65:3824–3829 [View Article]
    [Google Scholar]
  42. Suriyachadkun C, Ngaemthao W, Chunhametha S, Sanglier JJ. Actinoplanes luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:4227–4232 [View Article] [PubMed]
    [Google Scholar]
  43. Ngaemthao W, Chunhametha S, Suriyachadkun C. Actinoplanes subglobosus sp. nov., isolated from mixed deciduous forest soil. Int J Syst Evol Microbiol 2016; 66:4850–4855 [View Article]
    [Google Scholar]
  44. Qu Z, Bao X-D, Xie Q-Y, Zhao Y-X, Yan B et al. Actinoplanes sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:71–75 [View Article] [PubMed]
    [Google Scholar]
  45. Marcone GL, Binda E, Reguzzoni M, Gastaldo L, Dalmastri C et al. Classification of Actinoplanes sp. ATCC 33076, an actinomycete that produces the glycolipodepsipeptide antibiotic ramoplanin, as Actinoplanes ramoplaninifer sp. nov. Int J Syst Evol Microbiol 2017; 67:4181–4188 [View Article] [PubMed]
    [Google Scholar]
  46. Habib N, Khan IU, Chu X, Xiao M, Li S et al. Actinoplanes deserti sp. nov., isolated from a desert soil sample. Antonie van Leeuwenhoek 2018; 111:2303–2310 [View Article] [PubMed]
    [Google Scholar]
  47. He H, Xing J, Liu C, Li C, Ma Z et al. Actinoplanes rhizophilus sp. nov., an actinomycete isolated from the rhizosphere of Sansevieria trifasciata Prain. Int J Syst Evol Microbiol 2015; 65:4763–4768 [View Article] [PubMed]
    [Google Scholar]
  48. Tamura T, Nakagaito Y, Nishii T, Hasegawa T, Stackebrandt E et al. A new genus of the order Actinomycetales, Couchioplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchioplanes caeruleus subsp. azureus subsp. nov. Int J Syst Bacteriol 1994; 44:193–203 [View Article] [PubMed]
    [Google Scholar]
  49. Roman I, Fedorenko V, Gromyko O. Supplementary Material 2. figshare. Dataset 2024 [View Article]
    [Google Scholar]
  50. Sazak A, Sahin N, Camas M. Actinoplanes abujensis sp. nov., isolated from Nigerian arid soil. Int J Syst Evol Microbiol 2012; 62:960–965 [View Article]
    [Google Scholar]
  51. Ding L, Ding P, Liu W, Shen H, Xia Z et al. Three novel Actinoplanes species isolated by using polyaspartic acid as a water-retaining agent for the enrichment in situ. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  52. Zhang Y, Zhang J, Fan L, Pang H, Xin Y et al. Actinoplanes atraurantiacus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012; 62:2533–2537 [View Article]
    [Google Scholar]
  53. Nurkanto A, Lisdiyanti P, Hamada M, Ratnakomala S, Shibata C et al. Actinoplanes bogoriensis sp. nov., a novel actinomycete isolated from leaf litter. J Antibiot 2015; 69:26–30 [View Article]
    [Google Scholar]
  54. Parenti F, Pagani H, Beretta G. Lipiarmycin, a new antibiotic from Actinoplanes. I. Description of the producer strain and fermentation studies. J Antibiot 1975; 28:247–252 [View Article]
    [Google Scholar]
  55. Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE. Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 1990; 136:19–36 [View Article]
    [Google Scholar]
  56. Palleroni NJ. New species of the genus Actinoplanes, Actinoplanes ferrugineus. Int J Syst Bacteriol 1979; 29:51–55 [View Article]
    [Google Scholar]
  57. Xie Q-Y, Ma Q-Y, Yi K-X, Yang L, Dai H-F et al. Actinoplanes maris sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  58. Yamamura H, Shimizu A, Nakagawa Y, Hamada M, Otoguro M et al. Actinoplanes rishiriensis sp. nov., a novel motile actinomycete isolated by rehydration and centrifugation method. J Antibiot 2012; 65:249–253 [View Article]
    [Google Scholar]
  59. Ara I, Yamamura H, Tsetseg B, Daram D, Ando K. Actinoplanes toevensis sp. nov. and Actinoplanes tereljensis sp. nov., isolated from Mongolian soil. Int J Syst Evol Microbiol 2010; 60:919–927 [View Article]
    [Google Scholar]
  60. Wink J, Schumann P, Spöer C, Eisenbarth K, Glaeser SP et al. Emended description of Actinoplanes friuliensis and description of Actinoplanes nipponensis sp. nov., antibiotic-producing species of the genus Actinoplanes. Int J Syst Evol Microbiol 2014; 64:599–606 [View Article] [PubMed]
    [Google Scholar]
  61. Matsumoto A, Takahashi Y, Kudo T, Seino A, Iwai Y et al. Actinoplanes capillaceus sp. nov., a new species of the genus Actinoplanes. Antonie van Leeuwenhoek 2000; 78:107–115 [View Article] [PubMed]
    [Google Scholar]
  62. Kämpfer P, Huber B, Thummes K, Grün-Wollny I, Busse H-J. Actinoplanes couchii sp. nov. Int J Syst Evol Microbiol 2007; 57:721–724 [View Article] [PubMed]
    [Google Scholar]
  63. Goeker M. Genomic Encyclopedia of Archaeal and Bacterial Type Strains, Phase II: From Individual Species to Whole Genera Berkeley, CA: DOE Joint Genome Institute; 2012
    [Google Scholar]
  64. Luo X, Sun X, Huang Z, He C, Zhao J et al. Actinoplanes flavus sp. nov., a novel cellulase-producing actinobacterium isolated from coconut palm rhizosphere soil. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  65. Tamura T, Ishida Y, Suzuki K-I. Descriptions of Actinoplanes ianthinogenes nom. rev. and Actinoplanes octamycinicus corrig. comb. nov., nom. rev. Int J Syst Evol Microbiol 2011; 61:2916–2921 [View Article] [PubMed]
    [Google Scholar]
  66. Wink JM, Kroppenstedt RM, Schumann P, Seibert G, Stackebrandt E. Actinoplanes liguriensis sp. nov. and Actinoplanes teichomyceticus sp. nov. Int J Syst Evol Microbiol 2006; 56:2125–2130 [View Article] [PubMed]
    [Google Scholar]
  67. Gao R, Liu C, Zhao J, Jia F, Li C et al. Actinoplanes lutulentus sp. nov., isolated from mucky soil in China. Int J Syst Evol Microbiol 2014; 64:1782–1788 [View Article] [PubMed]
    [Google Scholar]
  68. Yamamura H, Ohnishi Y, Ishikawa J, Ichikawa N, Ikeda H et al. Complete genome sequence of the motile actinomycete Actinoplanes missouriensis 431(T) (= NBRC 102363T). Stand Genomic Sci 2012; 7:1–17 [View Article] [PubMed]
    [Google Scholar]
  69. Yushchuk O, Binda E, Rückert-Reed C, Berini F, Fedorenko V et al. Actinoplanes oblitus sp. nov., producing the glycopeptide antibiotic A477. Int J Syst Evol Microbiol 2024; 74: [View Article] [PubMed]
    [Google Scholar]
  70. Lechevalier MP, Lechevalier HA. Actinoplanete with cylindrical sporangia, Actinoplanes rectilineatus sp.nov. Int J Syst Bacteriol 1975; 25:371–376 [View Article]
    [Google Scholar]
  71. Wang Z, Xu Y, Zhou C, Sun X, Huang Z et al. Actinoplanes sandaracinus sp. nov., a novel ligninase- producing and cellulose-degrading actinobacterium isolated from soil. Int J Syst Evol Microbiol 2024; 74: [View Article] [PubMed]
    [Google Scholar]
  72. Suriyachadkun C, Ngaemthao W, Chunhametha S, Thawai C, Sanglier J-J. Actinoplanes siamensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:3037–3042 [View Article]
    [Google Scholar]
  73. Sun W, Dong GX, Zhang YQ, Wei YZ, Li QP et al. Actinoplanes sichuanensis sp. nov. and Actinoplanes xinjiangensis sp. nov. Int J Syst Evol Microbiol 2009; 59:2763–2768 [View Article] [PubMed]
    [Google Scholar]
  74. Ara I, Matsumoto A, Bakir MA, Kudo T, Omura S et al. Pseudosporangium ferrugineum gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int J Syst Evol Microbiol 2008; 58:1644–1652 [View Article] [PubMed]
    [Google Scholar]
  75. Han C, Jiang M, Shan Q, Liu T, Wang H et al. Nucisporomicrobium flavum gen. nov., sp. nov., a new member of the family Micromonosporaceae isolated from saline-alkali soil. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  76. Liu S-W, Tuo L, Li X-J, Li F-N, Li J et al. Mangrovihabitans endophyticus gen. nov., sp. nov., a new member of the family Micromonosporaceae isolated from Bruguiera sexangula. Int J Syst Evol Microbiol 2017; 67:1629–1636 [View Article] [PubMed]
    [Google Scholar]
  77. Han C, Liu T, Guo L, Wang X, Zhao J et al. Description of Jidongwangia harbinensis gen. nov. sp. nov. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  78. Ara I, Kudo T. Krasilnikovia gen. nov., a new member of the family Micromonosporaceae and description of Krasilnikovia cinnamonea sp. nov. Actinomycetologica 2007; 21:1–10 [View Article]
    [Google Scholar]
  79. Tamura T, Hayakawa M, Hatano K. A new genus of the order Actinomycetales, Spirilliplanes gen. nov., with description of Spirilliplanes yamanashiensis sp. nov. Int J Syst Bacteriol 1997; 47:97–102 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006464
Loading
/content/journal/ijsem/10.1099/ijsem.0.006464
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error