Skip to content
1887

Abstract

Two Gram-stain-negative, aerobic, milk-white coloured, non-motile, short rod-shaped bacteria, designated as strains SYSU D60010 and SYSU D60012, were isolated from sand samples collected from the Taklimakan Desert of Xinjiang Province in China. Both strains were positive for oxidase, catalase and nitrate reduction, but negative for amylase, HS production, hydrolysis of gelatin and cellulase. Strains SYSU D60010 and SYSU D60012 grew well at 28 °C, at pH 7 and had the same NaCl tolerance range of 0–1 % (w/v). The major fatty acids (>5 %) of strains SYSU D60010 and SYSU D60012 were summed feature 8 (C 7 and/or C 6), iso-C cyclo 8, C and iso-C 2-OH. Q-10 was the only respiratory ubiquinone. Strains SYSU D60010 and SYSU D60012 showed high 16S rRNA gene sequence similarities to SYSU M10001 (94.2 and 94.1 %), BUT-3 (92.0 and 91.9 %) and 120-1 (91.8 and 91.7 %), and the genomes were 7.4 and 5.8 Mbp in size with DNA G+C contents of 62.8 and 63.0 mol%, respectively. Phylogenetic, phenotypic and chemotaxonomic characteristics indicated that these two strains represent a novel genus and two novel species within the family . We propose the name gen. nov., sp. nov. for strain SYSU D60010, representing the type strain of this species (=KCTC 52783 =NBRC 113344) and gen. nov., sp. nov. for strain SYSU D60012, representing the type strain of this species (=KCTC 52785=NBRC 113128).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 32000005)
    • Principle Award Recipient: LeiDong
  • National Natural Science Foundation of China (Award 32061143043)
    • Principle Award Recipient: Wen-JunLi
  • National Natural Science Foundation of China (Award 32270076)
    • Principle Award Recipient: LeiDong
  • Guangdong Basic and Applied Basic Research Foundation (Award 2023A1515012020)
    • Principle Award Recipient: ShuaiLi
  • The Third Xinjiang Scientific Expedition Program (Award 2022xjkk1200)
    • Principle Award Recipient: LeiDong
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006462
2024-07-22
2025-06-14
Loading full text...

Full text loading...

References

  1. Douglas HC. Bergey’s manual of determinative bacteriology, 7th. edn Baltimore: The Williams and Wilkins Co; 1957
    [Google Scholar]
  2. Skerman VBD, McGowan V, Sneath PHA. Approved lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420 [View Article]
    [Google Scholar]
  3. Sun L, Liu H, Chen W, Huang K, Lyu W et al. Alsobacter soli sp. nov., a novel bacterium isolated from paddy soil, emended description of the genus Alsobacter and description of the family Alsobacteraceae fam. nov. Int J Syst Evol Microbiol 2018; 68:3902–3907 [View Article] [PubMed]
    [Google Scholar]
  4. Li X, Salam N, Li JL, Chen YM, Yang ZW et al. Aestuariivirga litoralis gen. nov., sp. nov., a proteobacterium isolated from a water sample, and proposal of Aestuariivirgaceae fam. nov. Int J Syst Evol Microbiol 2019; 69:299–306 [View Article]
    [Google Scholar]
  5. Lai Q, Liu X, Sun F, Shao Z. Acuticoccus sediminis sp. nov., isolated from deep-sea sediment of the Indian Ocean and proposal of Acuticoccaceae fam. nov. Int J Syst Evol Microbiol 2019; 69:1173–1178 [View Article]
    [Google Scholar]
  6. Hwang CY, Cho BC. Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov. Int J Syst Evol Microbiol 2008; 58:267–277 [View Article] [PubMed]
    [Google Scholar]
  7. Noh HJ, Baek K, Hwang CY, Shin SC, Hong SG et al. Lichenihabitans psoromatis gen. nov., sp. nov., a member of a novel lineage (Lichenihabitantaceae fam. nov.) within the order of Rhizobiales isolated from Antarctic lichen. Int J Syst Evol Microbiol 2019; 69:3837–3842 [View Article]
    [Google Scholar]
  8. Akter S, Shazib SUA, Shin MK. Segnochrobactrum spirostomi gen. nov., sp. nov., isolated from the ciliate Spirostomum yagiui and description of a novel family, Segnochrobactraceae fam. nov. within the order Rhizobiales of the class Alphaproteobacteria. . Int J Syst Evol Microbiol 2020; 70:1250–1258 [View Article]
    [Google Scholar]
  9. Huang Z, Guo F, Lai Q, Shao Z. Notoacmeibacter marinus gen. nov., sp. nov., isolated from the gut of a limpet and proposal of Notoacmeibacteraceae fam. nov. in the order Rhizobiales of the class Alphaproteobacteria.. Int J Syst Evol Microbiol 2017; 67:2527–2531 [View Article]
    [Google Scholar]
  10. Li S, Dong L, Lian W-H, Lin Z-L, Lu C-Y et al. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. Sci Total Environ 2021; 790:148235 [View Article]
    [Google Scholar]
  11. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  18. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  21. Shi W, Sun Q, Fan G, Hideaki S, Moriya O et al. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res 2021; 49:D694–D705 [View Article] [PubMed]
    [Google Scholar]
  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genom 2008; 9:75 [View Article]
    [Google Scholar]
  23. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  25. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  26. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  27. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalizedand complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  28. Dong L, Li S, Shi GY, Han JR, Lu CY et al. Aridibaculum aurantiacum gen. nov., sp. nov., isolated from the Kumtag desert soil. Int J Syst Evol Microbiol 2023; 73:
    [Google Scholar]
  29. Li S, Lian W-H, Han J-R, Ali M, Lin Z-L et al. Capturing the microbial dark matter in desert soils using culturomics-based metagenomics and high-resolution analysis. NPJ Biofilms Microbiomes 2023; 9:67 [View Article]
    [Google Scholar]
  30. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  31. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article]
    [Google Scholar]
  32. Li S, Shi L, Lian W-H, Lin Z-L, Lu C-Y et al. Arenibaculum pallidiluteum gen. nov., sp. nov., a novel bacterium in the family Azospirillaceae, isolated from desert soil, and reclassification of Skermanella xinjiangensis to a new genus Deserticella as Deserticella xinjiangensis comb. nov., and transfer of the genera Indioceanicola and Oleisolibacter from the family Rhodospirillaceae to the family Azospirillaceae. Int J Syst Evol Microbiol 2021; 71:71–77 [View Article]
    [Google Scholar]
  33. Zheng ZH, Lu CY, Lian WH, Han JR, Chen F et al. Danxiaibacter flavus gen. nov., sp. nov., a novel bacterium of the family Chitinophagaceae isolated from forest soil on Danxia Mountain. Int J Syst Evol Microbiol 202373–80 [View Article]
    [Google Scholar]
  34. Dong L, Ming H, Liu L, Zhou E-M, Yin Y-R et al. Zhizhongheella caldifontis gen. nov., sp. nov., a novel member of the family Comamonadaceae. Antonie van Leeuwenhoek 2014; 105:755–761 [View Article] [PubMed]
    [Google Scholar]
  35. Li S, Dong L, Han JR, Shi GY, Lu CY et al. Longitalea arenae gen. nov., sp. nov. and Longitalea luteola sp. nov., two new members of the family Chitinophagaceae isolated from desert soil. Arch Microbiol 2022204–499 [View Article] [PubMed]
    [Google Scholar]
  36. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  37. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  38. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  39. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  40. Fukuda W, Yamada K, Miyoshi Y, Okuno H, Atomi H et al. Rhodoligotrophos appendicifer gen. nov., sp. nov., an appendaged bacterium isolated from a freshwater Antarctic lake. Int J Syst Evol Microbiol 2012; 62:1945–1950 [View Article]
    [Google Scholar]
  41. Deng S-K, Chen G-Q, Chen Q, Cai S, Yao L et al. Rhodoligotrophos jinshengii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2014; 64:3325–3330 [View Article] [PubMed]
    [Google Scholar]
  42. Liu Y-L, Meng D, Li R-R, Gu P-F, Fan X-Y et al. Rhodoligotrophos defluvii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2019; 69:3830–3836 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006462
Loading
/content/journal/ijsem/10.1099/ijsem.0.006462
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error