Skip to content
1887

Abstract

Gram-stain-positive, aerobic, rod-shaped strains, YJM1 and YJM12S, were isolated from Maebong Mountain, Dogok-dong, Gangnam-gu, Seoul, Republic of Korea. Strains YJM1 and YJM12S exhibited growth at 5–35 °C (optimum, 20–30 °C) and pH 6–9 (optimum, pH 7) and in 0–4 % (w/v) NaCl. Strains YJM1 and YJM12S showed highest 16S rRNA gene sequence similarity to the following members of the genus : A33 (98.3 %/98.2 % similarity), NBRC 107840 (98.2 %/98.1 %), KV-653 (97.3 %), KV-651 (97.3 %), and NBRC 12137 (97.2 %). The strains grew well on Reasoner's 2A, nutrient, Mueller–Hinton, yeast–dextrose, and glucose–peptone–meat extract agars. The major polar lipids of strain YJM1 were phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylinositol. The primary respiratory quinone of strain YJM1 was MK-9(H), and the major fatty acids of strains YJM1 and YJM12S were anteiso-C, anteiso-C, iso-C, and iso-C. The DNA G+C content, based on the whole genome sequence of strain YJM1, was 68.3 mol%. Average nucleotide identity values and digital DNA–DNA hybridization values between strain YJM1 and the reference strains ranged from 75.0 to 92.7 % and from 21.0 to 65.3 %, respectively. Strain YJM1 exhibited antimicrobial activity against and . Considering the chemotaxonomic, phenotypic, genotypic, and phylogenetic results, we propose the strain YJM1 represents a novel species in the genus and suggest the name sp. nov. (type strain YJM1=KACC 23300=JCM 36483).

Funding
This study was supported by the:
  • National Research Foundation of Korea (Award 2022R1A2C1010877)
    • Principle Award Recipient: MingyeongPark
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006459
2024-07-15
2025-06-13
Loading full text...

Full text loading...

References

  1. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947; 54:291–303 [View Article] [PubMed]
    [Google Scholar]
  2. Jones D, Keddie RM. The genus Arthrobacter. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. eds The Prokaryotes, 3rd edition. New York, USA: Springer; 2017 pp 945–960
    [Google Scholar]
  3. Yan R, Liu D, Fu Y, Zhang Y, Ju H et al. Arthrobacter celericrescens sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:3093–3099 [View Article]
    [Google Scholar]
  4. Zhang Q, Oh M, Kim J-H, Kanjanasuntree R, Konkit M et al. Arthrobacter paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 2018; 68:47–51 [View Article] [PubMed]
    [Google Scholar]
  5. Yan R, Fu Y, Liu D, Jiang S, Ju H et al. Arthrobacter silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:3892–3896 [View Article] [PubMed]
    [Google Scholar]
  6. Lee SA, Kim JM, Cho H, Kim S-J, Ahn J-H et al. Arthrobacter silviterrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:4546–4551 [View Article] [PubMed]
    [Google Scholar]
  7. Hu Q-W, Chu X, Xiao M, Li C-T, Yan Z-F et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016; 66:2035–2040 [View Article] [PubMed]
    [Google Scholar]
  8. Yu X-Y, Zhang L, Ren B, Yang N, Liu M et al. Arthrobacter liuii sp. nov., resuscitated from Xinjiang desert soil. Int J Syst Evol Microbiol 2015; 65:896–901 [View Article] [PubMed]
    [Google Scholar]
  9. Huang Z, Bao YY, Yuan TT, Wang GX, He LY et al. Arthrobacter nanjingensis sp. nov., a mineral-weathering bacterium isolated from forest soil. Int J Syst Evol Microbiol 2015; 65:365–369 [View Article] [PubMed]
    [Google Scholar]
  10. Park Y, Kook M, Ngo HTT, Kim K-Y, Park S-Y et al. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove. Int J Syst Evol Microbiol 2014; 64:3069–3074 [View Article]
    [Google Scholar]
  11. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Arthrobacter gyeryongensis sp. nov., isolated from soil of a Gynostemma pentaphyllum field. Int J Syst Evol Microbiol 2014; 64:420–425 [View Article] [PubMed]
    [Google Scholar]
  12. Liu Q, Liu HC, Zhou YG, Xin YH. Genetic diversity of glacier-inhabiting Cryobacterium bacteria in China and description of Cryobacterium zongtaii sp. nov. and Arthrobacter glacialis sp. nov. Syst Appl Microbiol 2019; 42:168–177 [View Article] [PubMed]
    [Google Scholar]
  13. Liu Q, Xin Y-H, Chen X-L, Liu H-C, Zhou Y-G et al. Arthrobacter ruber sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2018; 68:1616–1621 [View Article] [PubMed]
    [Google Scholar]
  14. Margesin R, Schumann P, Zhang D-C, Redzic M, Zhou Y-G et al. Arthrobacter cryoconiti sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2012; 62:397–402 [View Article]
    [Google Scholar]
  15. Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G et al. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 1996; 34:2356–2363 [View Article] [PubMed]
    [Google Scholar]
  16. Wauters G, Charlier J, Janssens M, Delmée M. Identification of Arthrobacter oxydans, Arthrobacter luteolus sp. nov., and Arthrobacter albus sp. nov., isolated from human clinical specimens. J Clin Microbiol 2000; 38:2412–2415 [View Article] [PubMed]
    [Google Scholar]
  17. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66:9–37 [View Article]
    [Google Scholar]
  18. Busse H-J, Schumann P. Reclassification of Arthrobacter enclensis as Pseudarthrobacter enclensis comb. nov., and emended descriptions of the genus Pseudarthrobacter, and the species Pseudarthrobacter phenanthrenivorans and Pseudarthrobacter scleromae. Int J Syst Evol Microbiol 2019; 69:3508–3511 [View Article]
    [Google Scholar]
  19. Stackebrandt E, Fowler VJ, Fiedler F, Seiler H. Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 1983; 4:470–486 [View Article] [PubMed]
    [Google Scholar]
  20. Goodfellow M, Peter Kämpfer H-J, Trujillo ME, Ken-ichiro Suzuki WL, Whitman WB. The actinobacteria, part A. In Bergey’s Manual of Systematic Bacteriology Springer; 2012 pp 578–623
    [Google Scholar]
  21. Busse HJ, Wieser M. The genus Arthrobacter. In Rosenberg E, Delong EF, Lory S, Stackebrandt E, Thompson F et al. eds The Prokaryotes: Actinobacteria, 4th edition. New York, USA: Springer; 2014 pp 105–133 [View Article]
    [Google Scholar]
  22. Wietz M, Månsson M, Bowman JS, Blom N, Ng Y et al. Wide distribution of closely related, antibiotic-producing Arthrobacter strains throughout the Arctic Ocean. Appl Environ Microbiol 2012; 78:2039–2042 [View Article] [PubMed]
    [Google Scholar]
  23. Tindall BJ, Garrity GM. Proposals to clarify how type strains are deposited and made available to the scientific community for the purpose of systematic research. Int J Syst Evol Microbiol 2008; 58:1987–1990 [View Article] [PubMed]
    [Google Scholar]
  24. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  26. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  31. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  32. Doetsch RN. Determinative methods of light microscopy. In Gerd hardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. eds Manual of Methods for General Bacteriology Washington, DC, USA: American Society for Microbiology; 1981 pp 21–33
    [Google Scholar]
  33. Spormann AM. Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 1999; 63:621–641 [View Article] [PubMed]
    [Google Scholar]
  34. Breznak JA, Costilow RN. Physicochemical factors in growth. In Methods for General and Molecular Bacteriology Washinton, DC, USA: American Society of Microbiology; 2007 pp 309–329 [View Article]
    [Google Scholar]
  35. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, WA W, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  36. Dahal RH, Chaudhary DK, Kim J. Pinisolibacter ravus gen. nov., sp. nov., isolated from pine forest soil and allocation of the genera Ancalomicrobium and Pinisolibacter to the family Ancalomicrobiaceae fam. nov., and emendation of the genus Ancalomicrobium Staley 1968. Int J Syst Evol Microbiol 2018; 68:1955–1962 [View Article] [PubMed]
    [Google Scholar]
  37. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7:203–214 [View Article] [PubMed]
    [Google Scholar]
  38. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  39. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  40. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genom 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  41. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  42. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  43. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  44. Han S-R, Kim B, Jang JH, Park H, Oh T-J. Complete genome sequence of Arthrobacter sp. PAMC25564 and its comparative genome analysis for elucidating the role of CAZymes in cold adaptation. BMC Genom 2021; 22:403 [View Article] [PubMed]
    [Google Scholar]
  45. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  46. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  47. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Tech Note 2001; 101:1–6
    [Google Scholar]
  48. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006459
Loading
/content/journal/ijsem/10.1099/ijsem.0.006459
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error