Skip to content
1887

Abstract

A bacterial strain designated PU5-4 was isolated from the mealworm (the larvae of ) intestines. It was identified to be Gram-stain-negative, strictly aerobic, rod-shaped, non-motile, and non-spore-forming. Strain PU5-4 was observed to grow at 10–40 °C, at pH 7.0–10.0, and in the presence of 0–3.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PU5-4 should be assigned to the genus . The 16S rRNA gene sequence similarity analysis showed that strain PU5-4 was closely related to the type strains of DSM 22361 (98.49 %), NYYP31 (98.11 %), NCCP 698 (97.69 %) and HAL-9 (95.73 %). The predominant isoprenoid quinone is MK-7. The major fatty acids were identified as iso-C, iso-C3-OH and summed feature 3 (C 7 and/or C 6) and summed feature 9 (iso-C 9). The polar lipids are phosphatidylethanolamine, one unidentified phospholipid, and six unidentified lipids. The genomic DNA G+C content of strain PU5-4 is 40.24 mol%. The average nucleotide identity of strain PU5-4 exhibited respective values of 73.88, 73.37, 73.36 and 70.84 % comparing to the type strains of DSM 22361, NCCP 698, NYYP31 and HAL-9, which are below the cut-off level (95–96 %) for species delineation. Based on the above results, strain PU5-4 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PU5-4 (=CGMCC 1.61908=JCM 36663).

Funding
This study was supported by the:
  • State Key Laboratory of Microbial Technology Open Projects Fund (Award 2301-10)
    • Principle Award Recipient: ShengyingLi
  • National Natural Science Foundation of China (Award 32370124)
    • Principle Award Recipient: KunLiu
  • National Key Research and Development Program of China (Award 2019YFA0706900)
    • Principle Award Recipient: ShengyingLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006455
2024-07-18
2025-06-21
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33:580–598 [View Article]
    [Google Scholar]
  2. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998; 48:165–177 [View Article]
    [Google Scholar]
  3. Takeuchi M, Yokota A. Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. J Gen Appl Microbiol 1992; 38:465–482 [View Article]
    [Google Scholar]
  4. Wauters G, Janssens M, De Baere T, Vaneechoutte M, Deschaght P. Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium. Int J Syst Evol Microbiol 2012; 62:2598–2601 [View Article] [PubMed]
    [Google Scholar]
  5. Liu J, Yang L-L, Xu C-K, Xi J-Q, Yang F-X et al. Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol 2012; 62:1809–1813 [View Article] [PubMed]
    [Google Scholar]
  6. Wei W, Zhou Y, Wang X, Huang X, Lai R. Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2008; 58:2098–2101 [View Article] [PubMed]
    [Google Scholar]
  7. Xiao N, Liu Y, Gu Z, Liu X, Jiao N et al. Sphingobacterium yamdrokense sp. nov., isolated from Lake Yamdrok. Antonie van Leeuwenhoek 2015; 107:1331–1336 [View Article] [PubMed]
    [Google Scholar]
  8. Kim K-H, Ten LN, Liu Q-M, Im W-T, Lee S-T. Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 2006; 56:2031–2036 [View Article] [PubMed]
    [Google Scholar]
  9. Du J, Singh H, Won K, Yang J-E, Jin F-X et al. Sphingobacterium mucilaginosum sp. nov., isolated from rhizosphere soil of a rose. Int J Syst Evol Microbiol 2015; 65:2949–2954 [View Article]
    [Google Scholar]
  10. Lai W-A, Hameed A, Liu Y-C, Hsu Y-H, Lin S-Y et al. Sphingobacterium cibi sp. nov., isolated from the food-waste compost and emended descriptions of Sphingobacterium spiritivorum (Holmes et al. 1982) Yabuuchi et al. 1983 and Sphingobacterium thermophilum Yabe et al. 2013. Int J Syst Evol Microbiol 1982; 66:5336–5344 [View Article]
    [Google Scholar]
  11. Long X, Liu B, Zhang S, Zhang Y, Zeng Z et al. Sphingobacterium griseoflavum sp. nov., isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol 2016; 66:1956–1961 [View Article] [PubMed]
    [Google Scholar]
  12. Vsj S, Wenning M. Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 2012; 62:1506–1511 [View Article]
    [Google Scholar]
  13. Peng S, Hong DD, Xin YB, Jun LM, Hong WG. Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 2014; 64:3862–3866 [View Article] [PubMed]
    [Google Scholar]
  14. Yang Y, Yang J, Wu W-M, Zhao J, Song Y et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 2015; 49:12087–12093 [View Article]
    [Google Scholar]
  15. Yang Y, Yang J, Wu W-M, Zhao J, Song Y et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 2015; 49:12080–12086 [View Article]
    [Google Scholar]
  16. Peng B-Y, Su Y, Chen Z, Chen J, Zhou X et al. Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environ Sci Technol 2019; 53:5256–5265 [View Article]
    [Google Scholar]
  17. Narsing Rao MP, Dong Z-Y, Kan Y, Dong L, Li S et al. Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 2020; 70:1977–1981 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  19. Tamura K, Stecher G, Kumar S, Battistuzzi FU. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  22. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN:a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  25. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC. Whole-genome prokaryotic phylogeny. Bioinformatics 2005; 21:2329–2335 [View Article]
    [Google Scholar]
  26. Liu J, He J, Xue R, Xu B, Qian X et al. Biodegradation and up-cycling of polyurethanes: progress, challenges, and prospects. Biotechnol Adv 2021; 48:107730 [View Article] [PubMed]
    [Google Scholar]
  27. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016; 351:1196–1199 [View Article] [PubMed]
    [Google Scholar]
  28. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  29. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article] [PubMed]
    [Google Scholar]
  30. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article] [PubMed]
    [Google Scholar]
  31. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:1–6
    [Google Scholar]
  32. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  33. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  34. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  35. Fu Y-S, Hussain F, Habib N, Khan IU, Chu X et al. Sphingobacterium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017; 67:2284–2288 [View Article] [PubMed]
    [Google Scholar]
  36. Liu Y-Y, Liu F, Li Y-Q, Lei R-F, Ma Q et al. Sphingobacterium endophyticum sp. nov., a novel endophyte isolated from halophyte. Arch Microbiol 2020; 202:2771–2778 [View Article] [PubMed]
    [Google Scholar]
  37. Liu B, Yang X, Sheng M, Yang Z, Qiu J et al. Sphingobacterium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2020; 70:1931–1939 [View Article] [PubMed]
    [Google Scholar]
  38. Choi H-A, Lee S-S. Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. Int J Syst Evol Microbiol 2012; 62:2559–2564 [View Article] [PubMed]
    [Google Scholar]
  39. Huys G, Purohit P, Tan CH, Snauwaert C, Vos PD et al. Sphingobacterium cellulitidis sp. nov., isolated from clinical and environmental sources. Int J Syst Evol Microbiol 2017; 67:1415–1421 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006455
Loading
/content/journal/ijsem/10.1099/ijsem.0.006455
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error