Skip to content
1887

Abstract

A Gram-negative, ellipsoidal to short-rod-shaped, motile bacterium was isolated from Beijing's urban air. The isolate exhibited the closest kinship with 122213-3, exhibiting 98.4 % 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that it clustered closely with 122213-3, thus forming a distinct phylogenetic lineage within the genus . The average nucleotide identity and digital DNA–DNA hybridization values between strain I16B-00201 and 122213-3 were 84.6 and 29.4 %, respectively. The respiratory ubiquinone was ubiquinone 8. The major fatty acids (>10 %) were summed feature 3 (Cω6/Cω7, 43.3 %), summed feature 8 (Cω7/Cω6, 15.9 %) and C (11.0 %). The polyamine profile showed putrescine as the predominant compound. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unknown lipids and unknown phosphatidylaminolipids. The phenotypic, phylogenetic and chemotaxonomic results consistently supported that strain I16B-00201 represented a novel species of the genus , for which the name sp. nov. is proposed, with I16B-00201 (=CPCC 100848=KCTC 52095) designated as the type strain. Its DNA G+C content is 59.4 mol%. Pan-genome analysis indicated that some species possess diverse nitrogen and aromatic compound metabolism pathways, suggesting their potential value in pollutant treatment.

Funding
This study was supported by the:
  • Chinese Academy of Medical Sciences Initiative for Innovative Medicine (Award 2021-I2M-1-055)
    • Principle Award Recipient: Li-yanYu
  • National Natural Science Foundation of China (Award No. 32141003)
    • Principle Award Recipient: Li-yanYu
  • National Microbial Resource Center (Award No. NMRC-2023-3)
    • Principle Award Recipient: Li-yanYu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006450
2024-07-12
2025-05-15
Loading full text...

Full text loading...

References

  1. Lin S-Y, Hameed A, Arun AB, Liu Y-C, Hsu Y-H et al. Description of Noviherbaspirillum malthae gen. nov., sp. nov., isolated from an oil-contaminated soil, and proposal to reclassify Herbaspirillum soli, Herbaspirillum aurantiacum, Herbaspirillum canariense and Herbaspirillum psychrotolerans as Noviherbaspirillum soli comb. nov., Noviherbaspirillum aurantiacum comb. nov., Noviherbaspirillum canariense comb. nov. and Noviherbaspirillum psychrotolerans comb. nov. based on polyphasic analysis. Int J Syst Evol Microbiol 2013; 63:4100–4107 [View Article] [PubMed]
    [Google Scholar]
  2. Chaudhary DK, Dahal RH, Hong Y. Noviherbaspirillum pedocola sp. nov., isolated from oil-contaminated experimental soil. Arch Microbiol 2021; 203:3071–3076 [View Article] [PubMed]
    [Google Scholar]
  3. Sundararaman A, Srinivasan S, Lee S-S. Noviherbaspirillum humi sp. nov., isolated from soil. Antonie van Leeuwenhoek 2016; 109:697–704 [View Article] [PubMed]
    [Google Scholar]
  4. Ishii S, Ashida N, Ohno H, Segawa T, Yabe S et al. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 2017; 67:1841–1848 [View Article] [PubMed]
    [Google Scholar]
  5. Khan IU, Saqib M, Amin A, Hussain F, Li L et al. Noviherbaspirillum aridicola sp. nov., isolated from an arid soil in Pakistan. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  6. Peta V, Raths R, Bücking H. Massilia horti sp. nov. and Noviherbaspirillum arenae sp. nov., two novel soil bacteria of the Oxalobacteraceae. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  7. Chaudhary DK, Kim J. Noviherbaspirillum agri sp. nov., isolated from reclaimed grassland soil, and reclassification of Herbaspirillum massiliense (Lagier et al., 2014) as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 2017; 67:1508–1515 [View Article]
    [Google Scholar]
  8. Xue H, Piao CG, Lin YH, Bian DR, Li Y. Noviherbaspirillum aerium sp. nov., isolated from air. Int J Syst Evol Microbiol 2020; 70:6390–6395 [View Article] [PubMed]
    [Google Scholar]
  9. Kim SJ, Moon JY, Weon HY, Hong SB, Seok SJ et al. Noviherbaspirillum suwonense sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2014; 64:1552–1558 [View Article] [PubMed]
    [Google Scholar]
  10. Lagier JC, Gimenez G, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Herbaspirillum massiliense sp. nov. Stand Genomic Sci 2012; 7:200–209 [View Article]
    [Google Scholar]
  11. Wang Y, Zhuang G, Sun Y, An Z. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos Environ 2006; 40:6579–6591 [View Article]
    [Google Scholar]
  12. Isik K, Chun J, Hah YC, Goodfellow M. Nocardia salmonicida nom. rev., a fish pathogen. Int J Syst Bacteriol 1999; 49 Pt 2:833–837 [View Article] [PubMed]
    [Google Scholar]
  13. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652 [View Article] [PubMed]
    [Google Scholar]
  14. Barker J, Maxted H. Observations on the growth and movement of Acinetobacter on semi-solid media. J Med Microbiol 1975; 8:443–446 [View Article] [PubMed]
    [Google Scholar]
  15. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  16. Wexler HM, Reeves D, Summanen PH, Molitoris E, McTeague M et al. Sutterella wadsworthensis gen. nov., sp. nov., bile-resistant microaerophilic Campylobacter gracilis-like clinical isolates. Int J Syst Bacteriol 1996; 46:252–258 [View Article] [PubMed]
    [Google Scholar]
  17. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  18. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Usfcc Newsl 1990
    [Google Scholar]
  19. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article] [PubMed]
    [Google Scholar]
  20. Embley TM, Goodfellow M, Minnikin DE, O’Donnell AG. Lipid and wall amino acid composition in the classification of Rothia dentocariosa. Zentralbl Bakteriol Mikrobiol Hyg A 1984; 257:285–295 [PubMed]
    [Google Scholar]
  21. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead–zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017; 67:2160–2165 [View Article]
    [Google Scholar]
  22. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  26. Hong S-M, Kim S-J, An S-H, Kim J, Ha E-J et al. Receptor binding motif surrounding sites in the spike 1 protein of infectious bronchitis virus have high susceptibility to mutation related to selective pressure. J Vet Sci 2023; 24:e51 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  28. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article] [PubMed]
    [Google Scholar]
  29. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article] [PubMed]
    [Google Scholar]
  30. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  32. Zhang D-F, He W, Shao Z, Ahmed I, Zhang Y et al. EasyCGTree: a pipeline for prokaryotic phylogenomic analysis based on core gene sets. BMC Bioinformatics 2023; 24:390 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  34. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  35. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  36. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  37. Chen L, Xiong Z, Sun L, Yang J, Jin Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 2012; 40:D641–5 [View Article] [PubMed]
    [Google Scholar]
  38. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [View Article]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  40. Park Y, Maeng S, Lee SE, Han JH, Lee YK et al. Noviherbaspirillum galbum sp. nov., a bacterium isolated from soil. Arch Microbiol 2021; 203:823–828 [View Article] [PubMed]
    [Google Scholar]
  41. Zhu H-Z, Zhang Z-F, Zhou N, Jiang C-Y, Wang B-J et al. Bacteria and metabolic potential in karst caves revealed by intensive bacterial cultivation and genome assembly. Appl Environ Microbiol 2021; 87:e02440-20 [View Article] [PubMed]
    [Google Scholar]
  42. Carro L, Rivas R, León-Barrios M, González-Tirante M, Velázquez E et al. Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and Herbaspirillum soli sp. nov., isolated from volcanic mountain soil, and emended description of the genus Herbaspirillum. Int J Syst Evol Microbiol 2012; 62:1300–1306 [View Article] [PubMed]
    [Google Scholar]
  43. Bajerski F, Ganzert L, Mangelsdorf K, Lipski A, Busse H-J et al. Herbaspirillum psychrotolerans sp. nov., a member of the family Oxalobacteraceae from a glacier forefield. Int J Syst Evol Microbiol 2013; 63:3197–3203 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006450
Loading
/content/journal/ijsem/10.1099/ijsem.0.006450
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error