Skip to content
1887

Abstract

Three actinobacterial strains, KSW2-21, KSW2-29 and KSW4-17, were isolated from dried seaweeds collected around Gwakji Beach in Jeju, Republic of Korea. Their taxonomic positions were determined based on genomic, physiological and morphological characteristics. The isolates were Gram-positive, aerobic, non-motile, rod-shaped bacteria characterized by the following chemotaxonomic features: ornithine as the cell wall diamino acid, the -glycolyl type of murein, MK-11 as the predominant menaquinone, polar lipids including diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and four unidentified phospholipids, with anteiso-C, iso-C and anteiso-C as the the major fatty acids. The 16S rRNA gene phylogeny showed that the novel strains formed three distinct sublines within the genus . Strain KSW4-17 formed a tight cluster with the type strain of , while strains KSW2-21 and KSW2-29 occupied distinct positions between the type strains of and . Strains KSW4-17 and KSW2-29 showed 99.9 % rRNA gene sequence similarity to CGMCC 1.12512, while strain KSW2-21 revealed 99.4 % 16S rRNA gene sequence similarity to the type strains of and . The genome sizes and genomic G+C contents of the three isolates ranged from 3.44 to 3.74 Mbp and from 70.3 to 70.8 mol%, respectively. The phylogenomic tree based on 92 core gene sequences exhibited similar topologies to the 16S rRNA gene phylogeny. The comparison of overall genomic relatedness indices, such as average nucleotide indentity and digital DNA–DNA hybridization, supported that the isolates represent three new species of the genus . Based on the results obtained here, sp. nov. (type strain, KSW2-21=KACC 23322=DSM 116381), sp. nov. (type strain KSW2-29=KACC 22350=NBRC 115221) and sp. nov. (type strain, KSW4-17=KACC 23323=DSM 116383) are proposed.

Funding
This study was supported by the:
  • BioPS Co., Ltd.
    • Principle Award Recipient: SoonDong Lee
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006443
2024-07-12
2025-06-21
Loading full text...

Full text loading...

References

  1. Orla-Jensen S. The Lactic Acid Bacteria Høst, Copenhagen; 1919
    [Google Scholar]
  2. Fidalgo C, Riesco R, Henriques I, Trujillo ME, Alves A. Microbacterium diaminobutyricum sp. nov., isolated from Halimione portulacoides, which contains diaminobutyric acid in its cell wall, and emended description of the genus Microbacterium. Int J Syst Evol Microbiol 2016; 66:4492–4500 [View Article] [PubMed]
    [Google Scholar]
  3. Suzuki K, Hamada M. Genus I. Microbacterium Orla-Jensen 1919, 179AL emend. Takeuchi and Hatano 1988, 744VP. In Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki K et al. eds Bergey's Manual of Systematic Bacteriology, 2nd edn. vol 4 New York: Springer; 2012 pp 814–855
    [Google Scholar]
  4. Richert K, Brambilla E, Stackebrandt E. The phylogenetic significance of peptidoglycan types: molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16S rRNA genes. Syst Appl Microbiol 2007; 30:102–108 [View Article] [PubMed]
    [Google Scholar]
  5. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  6. Dong K, Yang J, Lu S, Pu J, Lai X-H et al. Microbacterium wangchenii sp. nov., isolated from faeces of Tibetan gazelles (Procapra picticaudata) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:1307–1314 [View Article] [PubMed]
    [Google Scholar]
  7. Bellassi P, Fontana A, Callegari ML, Cappa F, Morelli L. Microbacterium paulum sp. nov., isolated from microfiltered milk. Int J Syst Evol Microbiol 2021; 71:5119 [View Article] [PubMed]
    [Google Scholar]
  8. Tian Z, Yang J, Lai X-H, Pu J, Jin D et al. Microbacterium caowuchunii sp. nov. and Microbacterium lushaniae sp. nov., isolated from plateau pika (Ochotona curzoniae) on the Qinghai–Tibet Plateau of PR China. Int J Syst Evol Microbiol 2021; 71:4662 [View Article]
    [Google Scholar]
  9. Xie F, Niu S, Lin X, Pei S, Jiang L et al. Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria. J Microbiol 2021; 59:886–897 [View Article] [PubMed]
    [Google Scholar]
  10. Yacouba A, Sissoko S, Tchoupou Saha OLF, Haddad G, Dubourg G et al. Description of Acinetobacter ihumii sp. nov., Microbacterium ihumii sp. nov., and Gulosibacter massiliensis sp. nov., three new bacteria isolated from human blood. FEMS Microbiol Lett 2022; 369:1–8 [View Article] [PubMed]
    [Google Scholar]
  11. Lee SD, Kim IS. Microbacterium tenebrionis sp. nov. and Microbacterium allomyrinae sp. nov.,isolated from larvae of Tenebrio molitor L. and Allomyrina dichotoma, respectively. Int J Syst Evol Microbiol 2023; 73:5729
    [Google Scholar]
  12. Li C, Jin X, Yang F, Zhao J, Wang S et al. Microbacterium nymphoidis sp. nov. and Microbacterium festucae sp. nov., two novel species with high plant-promoting potential isolated from wetland plants in China. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  13. Lee SD, Yang HL, Kim IS. Four new Microbacterium species isolated from seaweeds and reclassification of five Microbacterium species with a proposal of Paramicrobacterium gen. nov. under a genome-based framework of the genus Microbacterium. Front Microbiol 2023; 14:1299950 [View Article]
    [Google Scholar]
  14. Lee SD. Labedella gwakjiensis gen. nov., sp. nov., a novel actinomycete of the family Microbacteriaceae. Int J Syst Evol Microbiol 2007; 57:2498–2502 [View Article] [PubMed]
    [Google Scholar]
  15. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2014; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  16. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN:a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  19. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  20. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  21. Terlouw BR, Blin K, Navarro-Muñoz JC, Avalon NE, Chevrette MG et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res 2023; 51:D603–D610 [View Article] [PubMed]
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 24:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Uchida K, Aida K. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30:131–134 [View Article]
    [Google Scholar]
  26. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–107 [View Article]
    [Google Scholar]
  28. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 173–199
    [Google Scholar]
  29. Riesco R, Trujillo ME. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2024; 74:006300 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:12196–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  32. Zhang Y, Ren H, Zhang G. Microbacterium hydrothermale sp. nov., an actinobacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol 2014; 64:3508–3512 [View Article] [PubMed]
    [Google Scholar]
  33. Collins MD, Jones D, Kroppenstedt RM. Reclassification of Brevibacterium imperiale (Steinhaus) and ‘Corynebacterium laevaniformans’ (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans comb. rev., comb. nov.. Syst Appl Microbiol 1983; 4:65–78 [View Article]
    [Google Scholar]
  34. Waksman SA, Woodruff HB. Bacteriostatic and bactericidal substances produced by a soil Actinomyces. Proc Soc Exp Biol Med 1940; 45:609–614 [View Article]
    [Google Scholar]
  35. Hopwood DA. Streptomyces in nature and medicine. In The Antibiotic Maker Oxford University Press; 2007 [View Article]
    [Google Scholar]
  36. Leão PN, Costa M, Ramos V, Pereira AR, Fernandes VC et al. Antitumor activity of hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains. PLoS One 2013; 8:e69562 [View Article] [PubMed]
    [Google Scholar]
  37. Ueda K, Miyake K, Horinouchi S, Beppu T. A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulator and membrane translocator. J Bacteriol 1993; 175:2006–2016 [View Article] [PubMed]
    [Google Scholar]
  38. Kook M, Son H-M, Yi T-H. Microbacterium kyungheense sp. nov. and Microbacterium jejuense sp. nov., isolated from salty soil. Int J Syst Evol Microbiol 2014; 64:2267–2273 [View Article] [PubMed]
    [Google Scholar]
  39. Mondani L, Piette L, Christen R, Bachar D, Berthomieu C et al. Microbacterium lemovicicum sp. nov., a bacterium isolated from a natural uranium-rich soil. Int J Syst Evol Microbiol 2013; 63:2600–2606 [View Article] [PubMed]
    [Google Scholar]
  40. Lee JS, Lee KC, Park YH. Microbacterium koreense sp. nov., from sea water in the South Sea of Korea. Int J Syst Evol Microbiol 2006; 56:423–427 [View Article] [PubMed]
    [Google Scholar]
  41. Schippers A, Bosecker K, Spröer C, Schumann P. Microbacterium oleivorans sp. nov. and Microbacterium hydrocarbonoxydans sp. nov., novel crude-oil-degrading Gram-positive bacteria. Int J Syst Evol Microbiol 2005; 55:655–660 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006443
Loading
/content/journal/ijsem/10.1099/ijsem.0.006443
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error