1887

Abstract

Novel Gram-positive, catalase-negative, α-haemolytic cocci were isolated from breast milk samples of healthy mothers living in Hanoi, Vietnam. The 16S rRNA gene sequences of these strains varied by 0–2 nucleotide polymorphisms. The 16S rRNA gene sequence of one strain, designated as BME SL 6.1, showed the highest similarity to those of NCTC 8618 (99.4 %), ATCC 49124 (99.4 %), and ATCC 19258 (99.3 %) in the salivarius group. Whole genome sequencing was performed on three selected strains. Phylogeny based on 631 core genes clustered the three strains into the salivarius group, and the strains were clearly distinct from the other species in this group. The average nucleotide identity (ANI) value of strain BME SL 6.1 exhibited the highest identity with NCTC 8618 (88.4 %), followed by ATCC 49124 (88.3 %) and ATCC 19258 (87.4 %). The ANI and digital DNA–DNA hybridization values between strain BME SL 6.1 and other species were below the cut-off value (95 and 70 %, respectively), indicating that it represents a novel species of the genus . The strains were able to produce α-galactosidase and acid from raffinose and melibiose. Therefore, we propose to assign the strains to a new species of the genus as sp. nov. The type strain is BME SL 6.1 (=VTCC 12812=NBRC 116368).

Funding
This study was supported by the:
  • Đại học Quốc gia Hà Nội (Award QG 2023)
    • Principle Award Recipient: AnhThi Van Trinh
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006442
2024-07-03
2024-07-23
Loading full text...

Full text loading...

References

  1. Paul D, George M, Dorothy J, Noel R, Wolfgang L et al. Bergey’s Manual of Systematic Bacteriology Williams; 2009 pp 470–471
    [Google Scholar]
  2. Gobbetti M, Calasso M. Streptococcus: introduction. In Encyclopedia of Food Microbiology: Volume 3 Elsevier; 2014 pp 535–553
    [Google Scholar]
  3. Lancefield RC. A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 1933; 57:571–595 [View Article] [PubMed]
    [Google Scholar]
  4. Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 2002; 15:613–630 [View Article] [PubMed]
    [Google Scholar]
  5. Sherman JM. The streptococci. Bacteriol Rev 1937; 1:3–97 [View Article] [PubMed]
    [Google Scholar]
  6. Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T. Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 1995; 45:406–408 [View Article] [PubMed]
    [Google Scholar]
  7. Richards VP, Palmer SR, Pavinski Bitar PD, Qin X, Weinstock GM et al. Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol Evol 2014; 6:741–753 [View Article] [PubMed]
    [Google Scholar]
  8. Póntigo F, Moraga M, Flores SV. Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res 2015; 14:10905–10918 [View Article] [PubMed]
    [Google Scholar]
  9. Teng JLL, Ma Y, Chen JHK, Luo R, Foo C-H et al. Streptococcus oriscaviae sp. nov. infection associated with guinea pigs. Microbiol Spectr 2022; 10:e0001422 [View Article] [PubMed]
    [Google Scholar]
  10. Krzyściak W, Pluskwa KK, Jurczak A, Kościelniak D. The pathogenicity of the Streptococcus genus. Eur J Clin Microbiol Infect Dis 2013; 32:1361–1376 [View Article] [PubMed]
    [Google Scholar]
  11. Delorme C, Abraham A-L, Renault P, Guédon E. Genomics of Streptococcus salivarius, a major human commensal. Infect Genet Evol 2015; 33:381–392 [View Article] [PubMed]
    [Google Scholar]
  12. Yu J, Sun Z, Liu W, Xi X, Song Y et al. Multilocus sequence typing of Streptococcus thermophilus from naturally fermented dairy foods in China and Mongolia. BMC Microbiol 2015; 15:236 [View Article] [PubMed]
    [Google Scholar]
  13. Li S, Li N, Wang C, Zhao Y, Cao J et al. Gut microbiota and immune modulatory properties of human breast milk Streptococcus salivarius and S. parasanguinis strains. Front Nutr 2022; 9:798403 [View Article] [PubMed]
    [Google Scholar]
  14. Karaçam S, Tunçer S. Lyophilized cell-free supernatants of the oral probiotics Streptococcus salivarius M18 and Streptococcus salivarius K12 show promises for milk safety. Lett Appl Microbiol 2023; 76:ovac034 [View Article] [PubMed]
    [Google Scholar]
  15. Burton JP, Wescombe PA, Moore CJ, Chilcott CN, Tagg JR. Safety assessment of the oral cavity probiotic Streptococcus salivarius K12. Appl Environ Microbiol 2006; 72:3050–3053 [View Article] [PubMed]
    [Google Scholar]
  16. Li X, Fields FR, Ho M, Marshall-Hudson A, Gross R et al. Safety assessment of Streptococcus salivarius DB-B5 as a probiotic candidate for oral health. Food Chem Toxicol 2021; 153:112277 [View Article] [PubMed]
    [Google Scholar]
  17. Gabor EM, de Vries EJ, Janssen DB. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol Ecol 2003; 44:153–163 [View Article] [PubMed]
    [Google Scholar]
  18. Anh HTL, Linh BNH, Trung TT. Evaluation of potential probiotic and technological properties of lactic acid bacteria isolated from traditional fermented lap Xuong sausage in northwestern Vietnam. Korean J Microbiol 2023; 59:91–103
    [Google Scholar]
  19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  20. Andrews S. FastQC a quality control tool for high throughput sequence data; 2010 www.bioinformatics.babraham.ac.uk/projects/fastqc/
  21. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  23. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  24. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  25. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012; 28:2678–2679 [View Article] [PubMed]
    [Google Scholar]
  26. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016; 32:292–294 [View Article] [PubMed]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  29. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  30. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  31. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  32. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN:a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  36. Florensa AF, Kaas RS, Clausen P, Aytan-Aktug D, Aarestrup FM. ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb Genom 2022; 8:000748 [View Article] [PubMed]
    [Google Scholar]
  37. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  38. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  39. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article] [PubMed]
    [Google Scholar]
  40. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  41. Seemann T. ABRicate: mass screening of contigs for antiobiotic resistance genes; 2016 https://github.com/tseemann/abricate
  42. Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 2022; 50:D912–D917 [View Article] [PubMed]
    [Google Scholar]
  43. Chen L, Yang J, Yu J, Yao Z, Sun L et al. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 2005; 33:D325–328 [View Article] [PubMed]
    [Google Scholar]
  44. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article] [PubMed]
    [Google Scholar]
  45. Clausen P, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics 2018; 19:307 [View Article] [PubMed]
    [Google Scholar]
  46. Facklam R, Elliott JA. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 1995; 8:479–495 [View Article] [PubMed]
    [Google Scholar]
  47. Hyun D-W, Lee J-Y, Kim M-S, Shin N-R, Whon TW et al. Pathogenomics of Streptococcus ilei sp. nov., a newly identified pathogen ubiquitous in human microbiome. J Microbiol 2021; 59:792–806 [View Article] [PubMed]
    [Google Scholar]
  48. CLSI Performance Standards for Antimicrobial Susceptibility Testing 30th ed. CLSI supplement M100 Wayne, PA: Clinical and Laboratory Standards Institute; 2020
    [Google Scholar]
  49. Martín V, Maldonado-Barragán A, Jiménez E, Ruas-Madiedo P, Fernández L et al. Complete genome sequence of Streptococcus salivarius PS4, a strain isolated from human milk. J Bacteriol 2012; 194:4466–4467 [View Article] [PubMed]
    [Google Scholar]
  50. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  51. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  52. Angeletti S, Dicuonzo G, Avola A, Crea F, Dedej E et al. Viridans group Streptococci clinical isolates: MALDI-TOF mass spectrometry versus gene sequence-based identification. PLoS One 2015; 10:e0120502 [View Article] [PubMed]
    [Google Scholar]
  53. Tanno D, Saito K, Ohashi K, Toyokawa M, Yamadera Y et al. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry with time-of-flight peak analysis for rapid and accurate detection of group B Streptococcus in pregnant women. Microbiol Spectr 2022; 10:e0173221 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006442
Loading
/content/journal/ijsem/10.1099/ijsem.0.006442
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error