1887

Abstract

Four rod-shaped, non-motile, non-spore-forming, facultative anaerobic, Gram-stain-positive lactic acid bacteria, designated as EB0058, SCR0080, LD0937 and SCR0063, were isolated from different corn and grass silage samples. The isolated strains were characterized using a polyphasic approach and EB0058 and SCR0080 were identified as by 16S rRNA gene sequence analysis. Based on whole-genome sequence-based characterization, EB0058 and SCR0080 were separated into a distinct clade from DSM 20178, together with CECT9104 and UD2202, whose genomic sequences are available from NCBI GenBank. The average nucleotide identity (ANI) values within the new subgroup are 99.9 % and the digital DNA–DNA hybridization (dDDH) values are 99.3–99.9 %, respectively. In contrast, comparison of the new subgroup with publicly available genomic sequences of strains, including the type strain DSM 20178, revealed dDDH values of 70.2–72.5 % and ANI values of 96.2–96.6 %. Based on their chemotaxonomic, phenotypic and phylogenetic characteristics, EB0058 and SCR0080 represent a new subspecies of . The name subsp. subsp. nov. is proposed with the type strain EB0058 (=DSM 116376=NCIMB 15474). According to the results of 16S rRNA gene sequencing, LD0937 and SCR0063 are members of the group. The dDDH value between the isolates LD0937 and SCR0063 was 67.6 %, which is below the species threshold of 70 %, clearly showing that these two isolates belong to different species. For both strains, whole genome-sequencing revealed that the closest relatives within the group were DSM 11542 (dDDH 66.5 and 65.9 %) and DSM 20011 (dDDH 64.1 and 64.9 %). Based on the genomic, chemotaxonomic and morphological data obtained in this study, two novel species, sp. nov. and sp. nov. are proposed and the type strains are LD0937 (=DSM 116105=NCIMB 15471) and SCR0063 (=DSM 116297=NCIMB 15473), respectively.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006441
2024-07-02
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/7/ijsem006441.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006441&mimeType=html&fmt=ahah

References

  1. Grabner F. M, Grabner H. M, Hermine S, Schrank A, Töglhofer M et al.Lacticaseibacillus Parahuelsenbergensis SP. Nov., Lacticaseibacillus Styriensis SP. Nov. and Lacticaseibacillus Zeae Subsp. Silagei Subsp. Nov., isolated from different grass and corn silage Figshare 2024 https://doi.org/10.6084/m9.figshare.26124445
    [Google Scholar]
  2. Sun ZH, Liu SM, Tayo GO, Tang SX, Tan ZL et al. Effects of cellulase or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover. Anim Feed Sci Technol 2009; 152:219–231 [View Article]
    [Google Scholar]
  3. Weinberg ZG, Chen Y. Effects of storage period on the composition of whole crop wheat and corn silages. Anim Feed Sci Technol 2013; 185:196–200 [View Article]
    [Google Scholar]
  4. Weinberg ZG, Muck RE. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol Rev 1996; 19:53–68 [View Article]
    [Google Scholar]
  5. Danner H, Holzer M, Mayrhuber E, Braun R. Acetic acid increases stability of silage under aerobic conditions. Appl Environ Microbiol 2003; 69:562–567 [View Article] [PubMed]
    [Google Scholar]
  6. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  7. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  8. Kuznetsov VD. A new species of lactic acid bacteria. Microbiologiya 1959248–351
    [Google Scholar]
  9. Mills CK, Lessel EF. Lactobacterium zeae Kuznetsov, a later subjective synonym of Lactobacillus casei (Orla-Jensen) Hansen and Lessel. Int J Syst Bacteriol 1973; 23:430–432 [View Article]
    [Google Scholar]
  10. Huang C-H, Chen C-C, Liou J-S, Lee A-Y, Blom J et al. Genome-based reclassification of Lactobacillus casei: emended classification and description of the species Lactobacillus zeae. Int J Syst Evol Microbiol 2020; 70:3755–3762 [View Article] [PubMed]
    [Google Scholar]
  11. Hill D, Sugrue I, Tobin C, Hill C, Stanton C et al. The Lactobacillus casei group: history and health related applications. Front Microbiol 2018; 9:2107 [View Article] [PubMed]
    [Google Scholar]
  12. Li F, Cheng CC, Zheng J, Liu J, Quevedo RM et al. Limosilactobacillus rudii sp. nov. and Limosilactobacillus fastidiosus sp. nov., five novel Limosilactobacillus species isolated from the vertebrate gastrointestinal tract, and proposal of six subspecies of Limosilactobacillus reuteri adapted to the gastrointestinal tract of specific vertebrate hosts. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  13. Li Y, Li W, Luo R, Sakandar HA, Zhang H et al. Lentilactobacillus rapi subsp. dabitei subsp. nov., a lactic acid bacterium isolated from naturally fermented dairy product. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  14. Tanizawa Y, Kobayashi H, Nomura M, Sakamoto M, Arita M et al. Lactobacillus buchneri subsp. silagei subsp. nov., isolated from rice grain silage. Int J Syst Evol Microbiol 2020; 70:3111–3116 [View Article]
    [Google Scholar]
  15. Grabner F M, Grabner H M, Schein H, Weidenholzer E, Busche T et al. Lacticaseibacillus huelsenbergensis sp. nov., isolated from grass silage and corn silage. Int J Syst Evol Microbiol 2023; 73:10 [View Article] [PubMed]
    [Google Scholar]
  16. Bai L, Paek J, Shin Y, Park H-Y, Chang YH. Lacticaseibacillus absianus sp. nov., isolated from the cecum of a mini-pig. Int J Syst Evol Microbiol 2019; 71: [View Article] [PubMed]
    [Google Scholar]
  17. Paek J, Bai L, Shin Y, Kim H, Kook J-K et al. Lacticaseibacillus kribbianus sp. nov., isolated from pig farm faeces dump. Int J Syst Evol Microbiol 2022; 72:11 [View Article] [PubMed]
    [Google Scholar]
  18. Huang C-H, Liou J-S, Lee A-Y, Tseng M, Miyashita M et al. Polyphasic characterization of a novel species in the Lactobacillus casei group from cow manure of Taiwan: description of L. chiayiensis sp. nov. Syst Appl Microbiol 2018; 41:270–278 [View Article] [PubMed]
    [Google Scholar]
  19. Oki K, Kudo Y, Watanabe K. Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2012; 62:601–607 [View Article] [PubMed]
    [Google Scholar]
  20. Bai L, Paek J, Shin Y, Kim H, Kim SH et al. Lacticaseibacillus parakribbianus sp. nov., isolated from a pig farm faeces dump. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  21. Tohno M, Tanizawa Y, Sawada H, Sakamoto M, Ohkuma M et al. A novel species of lactic acid bacteria, Ligilactobacillus pabuli sp. nov., isolated from alfalfa silage. Int J Syst Evol Microbiol 2022; 72:10 [View Article] [PubMed]
    [Google Scholar]
  22. Kim E, Yang S-M, Cho E-J, Kim H-Y. Novel real-time PCR assay for Lactobacillus casei group species using comparative genomics. Food Microbiol 2020; 90:103485 [View Article] [PubMed]
    [Google Scholar]
  23. Masco L, Huys G, Gevers D, Verbrugghen L, Swings J. Identification of Bifidobacterium species using rep-PCR fingerprinting. Syst Appl Microbiol 2003; 26:557–563 [View Article] [PubMed]
    [Google Scholar]
  24. Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 2001; 205:31–36 [View Article] [PubMed]
    [Google Scholar]
  25. Versalovic J, Schneider M, DeBruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 199425–40
    [Google Scholar]
  26. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  27. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics 2010; 95:315–327 [View Article] [PubMed]
    [Google Scholar]
  28. medaka: sequence correction provided by ONT research. n.d https://github.com/nanoporetech/medaka accessed 28 June 2023
  29. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  31. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genom Res 1998; 8:195–202 [View Article] [PubMed]
    [Google Scholar]
  32. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  33. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  35. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN:a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genom Sci 2014; 9:2 [View Article] [PubMed]
    [Google Scholar]
  42. Na S-I, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  43. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  44. Huang C-H, Li S-W, Huang L, Watanabe K. Identification and classification for the Lactobacillus casei group. Front Microbiol 2018; 9:1974 [View Article] [PubMed]
    [Google Scholar]
  45. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article] [PubMed]
    [Google Scholar]
  46. Huang C-H, Lee F-L. The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group. Antonie van Leeuwenhoek 2011; 99:319–327 [View Article] [PubMed]
    [Google Scholar]
  47. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article] [PubMed]
    [Google Scholar]
  48. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–W185 [View Article] [PubMed]
    [Google Scholar]
  49. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article] [PubMed]
    [Google Scholar]
  50. Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75:3491–3500 [View Article] [PubMed]
    [Google Scholar]
  51. Florensa AF, Kaas RS, Clausen PTLC, Aytan-Aktug D, Aarestrup FM. ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb Genom 2022; 8:000748 [View Article] [PubMed]
    [Google Scholar]
  52. European Food Safety Authority (EFSA) EFSA statement on the requirements for whole genome sequence analysis of microorganisms intentionally used in the food chain. EFSA J 2021; 19:e06506 [View Article] [PubMed]
    [Google Scholar]
  53. Barrow GI, Feltham RKA. eds Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn Cambridge University Press; 1993 [View Article]
    [Google Scholar]
  54. Zhang W, Lai S, Zhou Z, Yang J, Liu H et al. Screening and evaluation of lactic acid bacteria with probiotic potential from local Holstein raw milk. Front Microbiol 2022; 13:918774 [View Article] [PubMed]
    [Google Scholar]
  55. Casarotti SN, Carneiro BM, Todorov SD, Nero LA, Rahal P et al. In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Ann Microbiol 2017; 67:289–301 [View Article]
    [Google Scholar]
  56. Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B et al. Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 2006; 16:189–199 [View Article]
    [Google Scholar]
  57. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark: MIDI, Inc; 1990
    [Google Scholar]
  58. Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M et al. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 2021; 71:71 [View Article]
    [Google Scholar]
  59. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  60. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article]
    [Google Scholar]
  61. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article]
    [Google Scholar]
  62. Volokhov DV, Amselle M, Beck BJ, Popham DL, Whittaker P et al. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis). Int J Syst Evol Microbiol 2012; 62:2068–2076 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006441
Loading
/content/journal/ijsem/10.1099/ijsem.0.006441
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error