1887

Abstract

Phylogeny of 16S rRNA gene sequences showed that ZX-21 and DSW25-10 are closely related, and form a monophyletic clade affiliated with the genus . Whole genome sequence comparisons showed that ZX-21 and DSW25-10 shared 78.8 % digital DNA–DNA hybridization, 97.6 % average nucleotide identity and 98.1 % average amino acid identity. These values exceeded the recommended threshold values for species delineation. Thus, based on the principle of priority, we propose the reclassification of Yu . 2019 as a later heterotypic synonym of On . 2019.

Funding
This study was supported by the:
  • Quanzhou City Science & Technology Program of China (Award 2022C018R)
    • Principle Award Recipient: ZhaobinHuang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006431
2024-06-18
2024-07-15
Loading full text...

Full text loading...

References

  1. Li H-J, Zhang X-Y, Chen C-X, Zhang Y-J, Gao Z-M et al. Zhongshania antarctica gen. nov., sp. nov. and Zhongshania guokunii sp. nov., gammaproteobacteria respectively isolated from coastal attached (fast) ice and surface seawater of the Antarctic. Int J Syst Evol Microbiol 2011; 61:2052–2057 [View Article] [PubMed]
    [Google Scholar]
  2. On YG, Oh JS, Roh DH. Zhongshania marina sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2019; 69:542–546 [View Article] [PubMed]
    [Google Scholar]
  3. Weerawongwiwat V, Kim J-H, Lee J-S, Yoon J-H, Sukhoom A et al. Zhongshania aquimaris sp. nov., isolated from seawater. Arch Microbiol 2022; 204:563 [View Article]
    [Google Scholar]
  4. Park S, Park JM, Lee JS, Yoon JH. Zhongshania ponticola sp. nov., a novel lipolytic bacterium of the class Gammaproteobacteria isolated from seawater. Arch Microbiol 2018; 200:1177–1182 [View Article] [PubMed]
    [Google Scholar]
  5. Lo N, Kang HJ, Jeon CO. Zhongshania aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium isolated from marine sediment, and transfer of Spongiibacter borealis Jang et al. 2011 to the genus Zhongshania as Zhongshania borealis comb. nov. Int J Syst Evol Microbiol 2014; 64:3768–3774 [View Article] [PubMed]
    [Google Scholar]
  6. Yu X-D, Yu X-Y, Fu G-Y, Zhao Z, Shen X et al. Marortus luteolus gen. nov., sp. nov., isolated from surface seawater of the East Sea in China. Int J Syst Evol Microbiol 2019; 69:1490–1495 [View Article] [PubMed]
    [Google Scholar]
  7. Spring S, Scheuner C, Göker M, Klenk H-P. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281 [View Article] [PubMed]
    [Google Scholar]
  8. Liao H, Lin X, Li Y, Qu M, Tian Y. Reclassification of the taxonomic framework of orders Cellvibrionales, Oceanospirillales, Pseudomonadales, and Alteromonadales in class Gammaproteobacteria through phylogenomic tree analysis. mSystems 2020; 5:e00543-20 [View Article] [PubMed]
    [Google Scholar]
  9. Graeber I, Kaesler I, Borchert MS, Dieckmann R, Pape T et al. Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. Int J Syst Evol Microbiol 2008; 58:585–590 [View Article] [PubMed]
    [Google Scholar]
  10. Jean WD, Yeh YT, Huang SP, Chen JS, Shieh WY. Spongiibacter taiwanensis sp. nov., a marine bacterium isolated from aged seawater. Int J Syst Evol Microbiol 2016; 66:4094–4098 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon J. Spongiibacter thalassae sp. nov., a marine gammaproteobacterium isolated from seawater. Arch Microbiol 2022; 204:273 [View Article] [PubMed]
    [Google Scholar]
  12. Yoon J. Spongiibacter pelagi sp. nov., a marine gammaproteobacterium isolated from coastal seawater. Antonie van Leeuwenhoek 2022; 115:487–495 [View Article] [PubMed]
    [Google Scholar]
  13. Hwang CY, Cho BC. Spongiibacter tropicus sp. nov., isolated from a Synechococcus culture. Int J Syst Evol Microbiol 2009; 59:2176–2179 [View Article] [PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  15. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  18. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  19. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  20. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  21. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  22. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  23. Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun 2020; 11:2500 [View Article] [PubMed]
    [Google Scholar]
  24. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 2007; 23:127–128 [View Article] [PubMed]
    [Google Scholar]
  25. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006431
Loading
/content/journal/ijsem/10.1099/ijsem.0.006431
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error