1887

Abstract

Two bacteria, UG2_1 and UG2_2, were isolated from the gill tissues of the mangrove fiddler crab collected on the east coast of the Red Sea (Thuwal, Saudi Arabia). The cells are Gram-negative, rod-shaped, orange-pigmented, motile by gliding with no flagella, strictly aerobic, and grow at 20–37 °C (optimum, 28–35 °C), at pH 5.0–9.0 (optimum, pH 6.0–7.0), and with 1–11 % (w/v) NaCl (optimum, 2–4 %). They were positive for oxidase and catalase activity. Phylogenetic analysis based on 16S rRNA gene sequences indicated that isolates UG2_1 and UG2_2 belong to the genus , showing the highest similarity to HN-E26 (99.4 %). Phylogenomic analysis based on the whole genomes, independently using 49 and 120 concatenated genes, showed that strains UG2_1 and UG2_2 formed a monophyletic lineage in a different cluster from other type strain species within the genus . The genome sizes were 3.08 and 3.07 Mbp for UG2_1 and UG2_2, respectively, with a G+C content of 33.8 mol% for both strains. Values of average nucleotide identity and digital DNA–DNA hybridization between the strains and closely related species were 91.0 and 43.5 %, respectively. Chemotaxonomic analysis indicated that both strains had iso-C and iso-C G as dominant fatty acids, and the primary respiratory quinone was identified as MK-6. The major polar lipids comprised phosphatidylethanolamine, one unidentified glycolipid, one unidentified phospholipid, two unidentified aminolipids, and four unidentified lipids. Based on phylogenetic, phylogenomic, genome relatedness, phenotypic, and chemotaxonomical data, the two isolates represent a novel species within the genus , with the proposed name sp. nov., and the type strain UG2_1 (=KCTC 102158=DSM 117025).

Funding
This study was supported by the:
  • King Abdullah University of Science and Technology (Award CRG-7-3739)
    • Principle Award Recipient: DanieleDaffonchio
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006415
2024-06-12
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/6/ijsem006415.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006415&mimeType=html&fmt=ahah

References

  1. Boudreau SA, Worm B. Ecological role of large benthic decapods in marine ecosystems: a review. Mar Ecol Prog Ser 2012; 469:195–213 [View Article]
    [Google Scholar]
  2. Macintosh DJ. The Ecology and physiology of Decapods of mangrove swamps. Symp Zool Soc Lond 1988; 59:315–341
    [Google Scholar]
  3. Kristensen E. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 2008; 59:30–43 [View Article]
    [Google Scholar]
  4. Booth JM, Fusi M, Marasco R, Mbobo T, Daffonchio D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci Rep 2019; 9:3749 [View Article] [PubMed]
    [Google Scholar]
  5. Fusi M, Booth JM, Marasco R, Merlino G, Garcias-Bonet N et al. Bioturbation intensity modifies the sediment microbiome and biochemistry and supports plant growth in an arid mangrove system. Microbiol Spectr 2022; 10:e01117–22 [View Article] [PubMed]
    [Google Scholar]
  6. Booth JM, Fusi M, Marasco R, Daffonchio D. The microbial landscape in bioturbated mangrove sediment: a resource for promoting nature-based solutions for mangroves. Microb Biotechnol 2023; 16:1584–1602 [View Article] [PubMed]
    [Google Scholar]
  7. Fusi M, Giomi F, Babbini S, Daffonchio D, McQuaid CD et al. Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming. Oikos 2015; 124:784–795 [View Article]
    [Google Scholar]
  8. Luquet CM, Pellerano G, De Carlo J. Gill morphology and terrestrial adaptation in the estuarine crab Uca uruguayensis Nobili, 1901 (Decapoda, Brachyura). Crustac 1995; 68:882–892 [View Article]
    [Google Scholar]
  9. Brodie R, Chery ML, Habiba U, Pradhan A. Rising surface temperatures lead to more frequent and longer burrow retreats in males of the fiddler crab, Minuca pugnax. J Therm Biol 2023; 116:103639 [View Article] [PubMed]
    [Google Scholar]
  10. Cannicci S, Fratini S, Meriggi N, Bacci G, Iannucci A et al. To the land and beyond: crab microbiomes as a paradigm for the evolution of terrestrialization. Front Microbiol 2020; 11:575372 [View Article] [PubMed]
    [Google Scholar]
  11. Garuglieri E, Booth JM, Fusi M, Yang X, Marasco R et al. Morphological characteristics and abundance of prokaryotes associated with gills in mangrove brachyuran crabs living along a tidal gradient. PLoS One 2022; 17:e0266977 [View Article] [PubMed]
    [Google Scholar]
  12. Fusi M, Ngugi DK, Marasco R, Booth JM, Cardinale M et al. Gill-associated bacteria are homogeneously selected in amphibious mangrove crabs to sustain host intertidal adaptation. Microbiome 2023; 11:1–21 [View Article] [PubMed]
    [Google Scholar]
  13. Bacci G, Fratini S, Meriggi N, Cheng CL, Ng KH et al. Conserved organ-specific microbial assemblages in different populations of a terrestrial crab. Front Microbiol 2023a; 14:1113617 [View Article] [PubMed]
    [Google Scholar]
  14. Bacci G, Meriggi N, Cheng CL, Ng KH, Iannucci A et al. Species-specific gill’s microbiome of eight crab species with different breathing adaptations. Sci Rep 2023b; 13:21033 [View Article] [PubMed]
    [Google Scholar]
  15. Zilius M, Bonaglia S, Broman E, Chiozzini VG, Samuiloviene A et al. N2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont. Sci Rep 2020; 10:13966 [View Article] [PubMed]
    [Google Scholar]
  16. Li Y, Bai S, Yang C, Lai Q, Zhang H et al. Mangrovimonas yunxiaonensis gen. nov., sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:2043–2048 [View Article] [PubMed]
    [Google Scholar]
  17. Zhuang L, Lin B, Luo L. Mangrovimonas spongiae sp. nov., a novel member of the genus Mangrovimonas isolated from marine sponge. Int J Syst Evol Microbiol 2020; 70:1982–1986 [View Article]
    [Google Scholar]
  18. Yao S, Yang G, Zhang X, Lin C, Zhuang L. Mangrovimonas futianensis sp. nov., a novel species isolated from mangrove sediment. Int J Syst Evol Microbiol 2022; 72:005618 [View Article] [PubMed]
    [Google Scholar]
  19. Zhang W, Chen H, Lai Q, Huang Z. Mangrovimonas aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2023; 73:006120 [View Article] [PubMed]
    [Google Scholar]
  20. Dinesh B, Furusawa G, Amirul AA. Mangrovimonas xylaniphaga sp. nov. isolated from estuarine mangrove sediment of Matang Mangrove Forest, Malaysia. Arch Microbiol 2017; 199:63–67 [View Article] [PubMed]
    [Google Scholar]
  21. O’Connor RM, Fung JM, Sharp KH, Benner JS, McClung C et al. Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proc Natl Acad Sci USA 2014; 111:E5096–104 [View Article] [PubMed]
    [Google Scholar]
  22. Dashti AA, Jadaon MM, Abdulsamad AM, Dashti HM. Heat treatment of bacteria: a simple method of DNA extraction for molecular techniques. Kuwait Med J 2009; 41:117–122
    [Google Scholar]
  23. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  26. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  29. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  32. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 2007; 45:2761–2764 [View Article] [PubMed]
    [Google Scholar]
  33. De Bruijn FJ. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Env Microb 1992; 58:2180–2187 [View Article] [PubMed]
    [Google Scholar]
  34. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  35. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  36. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  38. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  39. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL et al. KBase: the United States department of energy systems biology knowledgebase. Nat Biotechnol 2018; 36:566–569 [View Article] [PubMed]
    [Google Scholar]
  40. Camargo AP, Roux S, Schulz F, Babinski M, Xu Y et al. Identification of mobile genetic elements with geNomad. Nat Biotechnol 2023; 21:1–10 [View Article] [PubMed]
    [Google Scholar]
  41. Price MN, Deutschbauer AM, Arkin AP. Filling gaps in bacterial catabolic pathways with computation and high-throughput genetics. PLoS Genet 2022; 18:e1010156 [View Article] [PubMed]
    [Google Scholar]
  42. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  43. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  45. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:1–14 [View Article] [PubMed]
    [Google Scholar]
  46. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  47. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:1–9 [View Article] [PubMed]
    [Google Scholar]
  48. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  49. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  50. Price MN, Dehal PS, Arkin AP. FastTree 2 approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  51. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  52. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  53. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  54. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  55. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprintse1900v1 2016 [View Article]
    [Google Scholar]
  56. Tu Q, Lin L. Gene content dissimilarity for subclassification of highly similar microbial strains. BMC Genomics 2016; 17:1–11 [View Article] [PubMed]
    [Google Scholar]
  57. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  58. Wang B, Sun F, Du Y, Liu X, Li G et al. Meridianimaribacter flavus gen. nov., SP. nov., a member of the family Flavobacteriaceae isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010; 60:121–127 [View Article] [PubMed]
    [Google Scholar]
  59. Mogadem A, Almamary MA, Mahat NA, Jemon K, Ahmad WA et al. Antioxidant activity evaluation of flexirubin-type pigment from Chryseobacterium artocarpi CECT 8497 and related docking study. Molecules 2021; 26:979 [View Article] [PubMed]
    [Google Scholar]
  60. Amorim LF, Fangueiro R, Gouveia IC. Novel functional material incorporating flexirubin‐type pigment in polyvinyl alcohol_kefiran/polycaprolactone nanofibers. J Appl Polym 2022; 139:e53208 [View Article]
    [Google Scholar]
  61. Aguilar Vitorino H, Pastrana Alta RY, Ortega P. Lipid peroxidation in hepatopancreas, gill, and hemolymph of male and female crabs Platyxanthus orbignyi after air exposure. J Mar Sci Eng 2019; 7:347 [View Article]
    [Google Scholar]
  62. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article] [PubMed]
    [Google Scholar]
  63. Barry AL. Procedures for testing antimicrobial agents in agar media. In Lorian V. ed Antibiotics in Laboratory Medicine Baltimore: Willams and Wilkins Company; 1980 pp 1–23
    [Google Scholar]
  64. McCammon SA, Bowman JP. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 2000; 50:1055–1063 [View Article] [PubMed]
    [Google Scholar]
  65. Shin SC, Kim S-H, You H, Kim B, Kim AC et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011; 334:670–674 [View Article] [PubMed]
    [Google Scholar]
  66. D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 2010; 17:254–264 [View Article] [PubMed]
    [Google Scholar]
  67. Wang B, Sun F, Du Y, Liu X, Li G et al. Meridianimaribacter flavus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010; 60:121–127 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006415
Loading
/content/journal/ijsem/10.1099/ijsem.0.006415
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error