1887

Abstract

Strain HUAS 3-15 was isolated from the leaves of collected from Chenzhou, Hunan Province, PR China. The main fatty acids (>5.0 %) of the strain were -C, C, C ω9, C, summed feature 5 (C ω6,9/C ante), C and C. MK-9(H), MK-9(H) and MK-9(H) were detected as respiratory quinones. The diagnostic cell-wall diamino acid was -diaminopimelic acid. Galactose, glucose and ribose were also present in the cell wall. The major polar lipids consisted of diphosphatidylglycerol, phosphatidyl ethanolamine, phosphatidylinositol mannosides and unidentified phospholipids. The DNA G+C content of the genome sequence, consisting of 8 860 963 bp, is 72.4 mol%. analysis based on 16S rRNA gene sequences revealed that the strain belongs to the genus , with 99.37, 99.03, 98.95, 98.68 and 98.67 % sequence similarity to ATCC 10762, DSM 44826, NBRC 13469, NRRL B-2218 and IFO 15206, respectively. Phylogenetic trees based on 16S rRNA gene and whole-genome sequences demonstrated that strain HUAS 3-15 formed a well‐supported cluster with ATCC 10762. Further genomic characterization through average nucleotide identity (ANIb/m) and digital DNA–DNA hybridization analysis between strain HUAS 3-15 and ATCC 10762 showed values of 90.62/92.55 % and 45.3 %, respectively, lower than the 95–96 % ANI threshold and 70.0 % cutoff used as guideline values for species delineation in bacteria. Furthermore, the differences between the strain and its phylogenomic neighbour in terms of physiological (e.g. sole carbon source growth) and chemotaxonomic (e.g. cellular fatty composition) characteristics further supported this conclusion. Consequently, we concluded that strain HUAS 3-15 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HUAS 3-15 (=MCCC 1K08542=JCM 36274).

Funding
This study was supported by the:
  • Innovation Team of Microbial Technology in Hunan University of Arts and Science (Award 202026)
    • Principle Award Recipient: YushuangLuo
  • Central guidance local science and technology development fund projects (Award 2023ZYC012)
    • Principle Award Recipient: YunWang
  • the Hunan Natural Science Foundation (Award 2023JJ50049)
    • Principle Award Recipient: WangYun
  • the Hunan Natural Science Foundation (Award 2023JJ50325)
    • Principle Award Recipient: LuoYushuang
  • the Hunan Natural Science Foundation (Award 2024JJ7300)
    • Principle Award Recipient: MoPing
  • the project of Hunan Provincial Education Department (Award 23B0659)
    • Principle Award Recipient: PingMo
  • the Innovation and Entrepreneurship Training Program for College Students
    • Principle Award Recipient: YaxiZheng
  • the Hunan Natural Science Foundation (Award 2023JJ30436)
    • Principle Award Recipient: PengXie
  • Hunan Provincial Natural Science Foundation (2023JJ40464)
    • Principle Award Recipient: ZhouZhibo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006406
2024-05-29
2024-06-19
Loading full text...

Full text loading...

References

  1. Omura S, Takahashi Y, Iwai Y, Tanaka H. Kitasatosporia, a new genus of the order Actinomycetales. J Antibiot 1982; 35:1013–1019 [View Article] [PubMed]
    [Google Scholar]
  2. Zhang ZS, Wang Y, Ruan JS. A proposal to revive the genus Kitasatospora. Int J Syst Bacteriol 1997; 47:1048–1054 [View Article]
    [Google Scholar]
  3. Takahashi Y. Genus Kitasatospora, taxonomic features and diversity of secondary metabolites. J Antibiot 2017; 70:506–513 [View Article]
    [Google Scholar]
  4. Caruso M, Colombo AL, Crespi-Perellino N, Fedeli L, Ventrella G. Studies on a strain of Kitasatospora sp. paclitaxel producer. Ann Microbiol 2000; 50:89–102
    [Google Scholar]
  5. Aroonsri A, Kitani S, Hashimoto J, Kosone I, Izumikawa M et al. Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae. Appl Environ Microbiol 2012; 78:8015–8024 [View Article] [PubMed]
    [Google Scholar]
  6. Tajima K, Takahashi Y, Seino A, Iwai Y, Omura S. Description of two novel species of the genus Kitasatospora Omura et al. 1982, Kitasatospora cineracea sp. nov. and Kitasatospora niigatensis sp. nov. Int J Syst Evol Microbiol 2001; 51:1765–1771 [View Article]
    [Google Scholar]
  7. Groth I, Schütze B, Boettcher T, Pullen CB, Rodriguez C et al. Kitasatospora putterlickiae sp. nov., isolated from rhizosphere soil, transfer of Streptomyces kifunensis to the genus Kitasatospora as Kitasatospora kifunensis comb. nov., and emended description of Streptomyces aureofaciens Duggar. Int J Syst Evol Microbiol 2003; 53:2033–2040 [View Article] [PubMed]
    [Google Scholar]
  8. Groth I, Rodriguez C, Schutze B, Schmitz P, Leistner E et al. Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 2004; 54:2121–2129 [View Article]
    [Google Scholar]
  9. Liu ZH, Rodríguez C, Wang LM, Cui QF, Huang Y. Kitasatospora viridis sp. nov., a novel actinomycete from soil. Int J Syst Evol Microbiol 2005; 55:707–711 [View Article]
    [Google Scholar]
  10. Stamford TLM, Stamford TCM, Stamford NP, Santos CERS, de Lyra M do CCP et al. Interspecies variation of Kitasatospora recifensis endophytic from yam bean producing thermostable amylases in alternative media. World J Microbiol Biotechnol 2007; 23:1719–1724 [View Article] [PubMed]
    [Google Scholar]
  11. Kim MJ, Roh SG, Kim M-K, Park C, Kim S et al. Kitasatospora acidiphila sp. nov., isolated from pine grove soil, exhibiting antimicrobial potential. Int J Syst Evol Microbiol 2020; 70:5567–5575 [View Article] [PubMed]
    [Google Scholar]
  12. Chung YR, Sung KC, Mo HK, Son DY, Nam JS et al. Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int J Syst Bacteriol 1999; 49:753–758 [View Article] [PubMed]
    [Google Scholar]
  13. Klaysubun C, Srisuk N, Duangmal K. Kitasatospora humi sp. nov., isolated from a tropical peat swamp forest soil, and proposal for the reclassification of Kitasatospora psammotica as a later heterotypic synonym of Kitasatospora aureofaciens. Int J Syst Evol Microbiol 2022; 72:005356 [View Article] [PubMed]
    [Google Scholar]
  14. Mayilraj S, Krishnamurthi S, Saha P, Saini HS. Kitasatospora sampliensis sp. nov., a novel actinobacterium isolated from soil of a sugar-cane field in India. Int J Syst Evol Microbiol 2006; 56:519–522 [View Article] [PubMed]
    [Google Scholar]
  15. Deng AH, Luo YJ, Wu C, Chen D, Mo P et al. Streptomyces cynarae sp. nov., a novel actinomycete isolated from the leaves of Cynara scolymus L. Antonie van Leeuwenhoek 2023; 116:1277–1284 [View Article] [PubMed]
    [Google Scholar]
  16. Mo P, Yu YZ, Zhao J-R, Gao J. Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil. Antonie van Leeuwenhoek 2017; 110:297–304 [View Article] [PubMed]
    [Google Scholar]
  17. Atlas RM, Parks LC. eds Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  18. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7 [View Article] [PubMed]
    [Google Scholar]
  19. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  20. Ridgway R. Color Standards and Color Nomenclature Washington, DC: Published by the author; 1912
    [Google Scholar]
  21. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  22. Xu LH, Li WJ, Liu ZH, Jiang CL. Actinomycete systematic- principle. In Methods and Practice Beijing: Science Press; 2007
    [Google Scholar]
  23. MIDI Sherlock Microbial Identification System Operating Manual, Version 6.0 Newark DE: MIDI Inc; 2005
    [Google Scholar]
  24. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  25. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  26. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  27. Ruan J, Huang Y. Rapid Identification and Systematics of Actinobacteria Beijing: Science Press; 2011
    [Google Scholar]
  28. Mo P, Li KQ, Zhou JH, Zhou FM, He J et al. Nocardiopsis changdeensis sp. nov., an endophytic actinomycete isolated from the roots of Eucommia ulmoides Oliv. J Antibiot 2023; 76:191–197 [View Article] [PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1972; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  33. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  34. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  35. Vincent L, Richard D, Olivier G. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  36. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  37. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2011; 39:W339–W346
    [Google Scholar]
  38. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  39. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2019; 18:67–83 [View Article] [PubMed]
    [Google Scholar]
  40. Claire B, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article] [PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:14 [View Article] [PubMed]
    [Google Scholar]
  43. Takahashi Y, Seino A, Iwai Y, Omura S. Taxonomic study and morphological differentiation of an actinomycete genus, Kitasatospora. Zentralbl Bakteriol 1999; 289:265–284 [View Article] [PubMed]
    [Google Scholar]
  44. Kämpfer P. Genus Incertae sedis I. Kitasatospora. In Bergey’s Manual of Systematic Bacteriology. Springer US vol 5 2012 pp 1768–1777
    [Google Scholar]
  45. Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 2007; 7:78 [View Article] [PubMed]
    [Google Scholar]
  46. Hetrick KJ, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr Opin Chem Biol 2017; 38:36–44 [View Article] [PubMed]
    [Google Scholar]
  47. Ansari MZ, Sharma J, Gokhale RS, Mohanty D. In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites. BMC Bioinformatics 2008; 9:454 [View Article] [PubMed]
    [Google Scholar]
  48. Yadav G, Gokhale RS, Mohanty D. Towards prediction of metabolic products of polyketide synthases: an in silico analysis. PLoS Comput Biol 2009; 5:1000351 [View Article] [PubMed]
    [Google Scholar]
  49. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  50. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O. International committee on systematic bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics.. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  51. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  52. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006406
Loading
/content/journal/ijsem/10.1099/ijsem.0.006406
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error