1887

Abstract

The genera and are phylogenetically related genera within the family . Species of these genera were described using 16S rRNA gene-based phylogeny and phenotypic characteristics. However, the 16S rRNA gene identity and phylogeny reveal the controversy of the taxonomic status of these two genera. In this work, we examined the taxonomic positions of members of both genera using 16S rRNA gene phylogeny, phylogenomic analysis and further validated using overall genome-related indexes, including digital DNA–DNA hybridization, average nucleotide identity, average amino acid identity and percentage of conserved proteins. Based on phylogenetic and phylogenomic results, the current four species of the two genera clustered tightly into one clade with high bootstrap values, suggesting that the genus should be merged with . In addition, a novel species isolated from a soda soil sample collected from Anda City, PR China, and designated as HJB301 was also described. Phenotypic, chemotaxonomic, genomic and phylogenetic properties suggested that strain HJB301 (=CCTCC AB 2021113=KCTC 82977) represents a novel species of the genus , for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • Natural Science Foundation of Jiangsu Province of China (Award BK20150497)
    • Principle Award Recipient: LinZhu
  • Natural Science Foundation of Jiangsu Province of China (Award BK20150496)
    • Principle Award Recipient: WeiWei
  • Priority Academic Program Development of Jiangsu Higher Education Institutions (Award PAPD-2018-87)
    • Principle Award Recipient: WeiWei
  • National Natural Science Foundation of China (Award 31600069)
    • Principle Award Recipient: LinZhu
  • National Natural Science Foundation of China (Award 41503068)
    • Principle Award Recipient: WeiWei
  • National Natural Science Foundation of China (Award 31770543)
    • Principle Award Recipient: WeiWei
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006402
2024-06-04
2024-06-19
Loading full text...

Full text loading...

References

  1. Sorokin DI, Turova TP, Kuznetsov BB, Briantseva IA, Gorlenko VM. Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll-alpha-containing bacteria from a soda lake. Microbiology 2000; 69:89–97 [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Boldareva EN, Briantseva IA, Tsapin A, Nelson K, Sorokin DI et al. The new bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda Mono Lake (California, United States). Mikrobiologiia 2007; 76:95–106 [View Article] [PubMed]
    [Google Scholar]
  4. Milford AD, Achenbach LA, Jung DO, Madigan MT. Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 2000; 174:18–27 [View Article] [PubMed]
    [Google Scholar]
  5. Boldareva EN, Akimov VN, Boĭchenko VA, Stadnichuk IN, Moskalenko AA et al. Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, eastern Siberia). Mikrobiologiia 2008; 77:206–218 [PubMed]
    [Google Scholar]
  6. Zhou H, Yang M, Xue Q, Kumar S, Zhang S et al. Rhabdonatronobacter sediminivivens gen. nov., sp. nov. isolated from the sediment of Hutong Qagan soda Lake. Arch Microbiol 2022; 204:204
    [Google Scholar]
  7. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  8. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  11. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  12. Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y, Arita M. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health 2016; 35:173–184 [View Article] [PubMed]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  14. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  15. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  16. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29 [View Article]
    [Google Scholar]
  17. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  18. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; 34:D354–D357 [View Article] [PubMed]
    [Google Scholar]
  19. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genom 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  20. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article] [PubMed]
    [Google Scholar]
  21. Gregersen T. Rapid method for distinction of gram-negative from Gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  22. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  23. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order actinomycetales. Int J Syst Bacteriol 1993; 43:805–812 [View Article]
    [Google Scholar]
  24. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  25. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  26. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Method General Mol Microbiol 2007330–393 [View Article]
    [Google Scholar]
  27. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  28. Lin C-Y, Zhang X-Y, Liu A, Liu C, Song X-Y et al. Marivirga atlantica sp. nov., isolated from seawater and emended description of the genus Marivirga. Int J Syst Evol Microbiol 2015; 65:1515–1519 [View Article] [PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  31. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  32. Qi-Long Q, Bin-Bin X, Xi-Ying Z, Xiu-Lan C, Bai-Cheng Z et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215
    [Google Scholar]
  33. Yu Y, Yan S-L, Li H-R, Zhang X-H. Roseicitreum antarcticum gen. nov., sp. nov., an aerobic bacteriochlorophyll a-containing alphaproteobacterium isolated from Antarctic sandy intertidal sediment. Int J Syst Evol Microbiol 2011; 61:2173–2179 [View Article] [PubMed]
    [Google Scholar]
  34. Labrenz M, Lawson PA, Tindall BJ, Hirsch P. Roseibaca ekhonensis gen. nov., sp. nov., an alkalitolerant and aerobic bacteriochlorophyll a-producing alphaproteobacterium from hypersaline Ekho Lake. Int J Syst Evol Microbiol 2009; 59:1935–1940 [View Article] [PubMed]
    [Google Scholar]
  35. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  36. Liang KYH, Orata FD, Boucher YF, Case RJ. Roseobacters in a sea of poly- and paraphyly: whole genome-based taxonomy of the family Rhodobacteraceae and the proposal for the split of the “Roseobacter clade” into a novel family, Roseobacteraceae fam. nov. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006402
Loading
/content/journal/ijsem/10.1099/ijsem.0.006402
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error