1887

Abstract

Three psychrophilic bacteria, designated as strains SQ149, SQ345, and S1-1, were isolated from deep-sea sediment from the South China Sea. All three strains were the most closely related to RZG4-3-1 based on the 16S rRNA gene sequence analysis (similarity ranged from 96.45 to 96.67 %). Phylogenetic analysis based on the 16S rRNA gene and core-genome sequences showed that three strains formed a cluster within the genus . The average amino acid identity, average nucleotide identity, and digital DNA–DNA hybridization values among the three strains and closest species were far below the cut-off value recommended for delineating species, indicating they each represented a novel species. All three strains were Gram-stain-negative, rod-shaped, and contained summed feature 3 (C ω7 and/or C ω6) as the predominant fatty acid, Q-8 as the major respiratory quinone, and phosphatidylethanolamine and phosphatidylglycerol as predominant polar lipids. Based on the genomic, phylogenetic, and phenotypic characterizations, each strain is considered to represent a novel species within the genus , for which the names sp. nov. (type strain SQ149=MCCC 1K04231=JCM 33807), sp. nov. (type strain SQ345=MCCC 1K04232=JCM 33808), and sp. nov. (type strain S1-1=MCCC 1K06879=JCM 34824) are proposed.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award NSFC 42076127)
    • Principle Award Recipient: Wei-jiaZhang
  • National Natural Science Foundation of China (Award NSFC 42176121)
    • Principle Award Recipient: Wei-jiaZhang
  • Major Scientific and Technological Projects of Hainan Province (Award ZDKJ2019011)
    • Principle Award Recipient: Wei-jiaZhang
  • Major Scientific and Technological Projects of Hainan Province (Award ZDKJ2021028)
    • Principle Award Recipient: Wei-jiaZhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006399
2024-05-28
2024-06-19
Loading full text...

Full text loading...

References

  1. Zhang YH, Tang KH, Shi XC, Zhang XH. Description of Thalassotalea piscium gen. nov., sp. nov., isolated from flounder (Paralichthys olivaceus), reclassification of four species of the genus Thalassomonas as members of the genus Thalassotalea gen. nov. and emended description of the genus Thalassomonas. Int J Syst Evol Microbiol 2014; 64:1223–1228 [View Article]
    [Google Scholar]
  2. Park S, Choi WC, Oh TK, Yoon JH. Thalassomonas agariperforans sp. nov., an agarolytic bacterium isolated from marine sand. Int J Syst Evol Microbiol 2011; 61:2573–2576 [View Article]
    [Google Scholar]
  3. Park S, Jung YT, Kang CH, Park JM, Yoon JH. Thalassotalea ponticola sp. nov., isolated from seawater, reclassification of Thalassomonas fusca as Thalassotalea fusca comb. nov. and emended description of the genus Thalassotalea. Int J Syst Evol Microbiol 2014; 64:3676–3682 [View Article]
    [Google Scholar]
  4. Jean WD, Shieh WY, Liu TY. Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas. Int J Syst Evol Microbiol 2006; 56:1245–1250 [View Article] [PubMed]
    [Google Scholar]
  5. Sheu DS, Sheu SY, Xie PB, Tang SL, Chen WM. Thalassotalea coralli sp. nov., isolated from the torch coral Euphyllia glabrescens. Int J Syst Evol Microbiol 2018; 68:185–191 [View Article] [PubMed]
    [Google Scholar]
  6. Sun C, Huo Y-Y, Liu J-J, Pan J, Qi Y-Z et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014; 64:2079–2083 [View Article] [PubMed]
    [Google Scholar]
  7. Jung YT, Park S, Yoon JH. Thalassomonas fusca sp. nov., a novel gammaproteobacterium isolated from tidal flat sediment. Antonie Van Leeuwenhoek 2014; 105:81–87 [View Article] [PubMed]
    [Google Scholar]
  8. Liu J, Sun YW, Li SN, Zhang DC. Thalassotalea profundi sp. nov. isolated from a deep-sea seamount. Int J Syst Evol Microbiol 2017; 67:3739–3743 [View Article] [PubMed]
    [Google Scholar]
  9. Xu ZX, Lu DC, Liang QY, Chen GJ, Du ZJ. Thalassotalea sediminis sp. nov., isolated from coastal sediment. Antonie Van Leeuwenhoek 2016; 109:371–378 [View Article] [PubMed]
    [Google Scholar]
  10. Kim M, Cha IT, Lee KE, Lee EY, Park SJ. Genomics reveals the metabolic potential and functions in the redistribution of dissolved organic matter in marine environments of the genus Thalassotalea. Microorganisms 2020; 8:1412 [View Article] [PubMed]
    [Google Scholar]
  11. Yamano R, Yu J, Haditomo AHC, Jiang C, Mino S et al. Genome taxonomy of the genus Thalassotalea and proposal of Thalassotalea hakodatensis sp. nov. isolated from sea cucumber larvae. PLoS One 2023; 18:e0286693 [View Article] [PubMed]
    [Google Scholar]
  12. Yi H, Bae KS, Chun J. Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004; 54:377–380 [View Article] [PubMed]
    [Google Scholar]
  13. Park S, Choi J, Won SM, Yoon JH. Thalassotalea insulae sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:1321–1326 [View Article]
    [Google Scholar]
  14. Lian FB, Jiang S, Ren TY, Zhou BJ, Du ZJ. Thalassotalea algicola sp. nov., an alginate-utilizing bacterium isolated from a red alga. Antonie Van Leeuwenhoek 2021; 114:835–844 [View Article] [PubMed]
    [Google Scholar]
  15. Wang Y, Liu T, Ming H, Sun P, Cao C et al. Thalassotalea atypica sp. nov., isolated from seawater, and emended description of Thalassotalea eurytherma. Int J Syst Evol Microbiol 2018; 68:271–276 [View Article] [PubMed]
    [Google Scholar]
  16. Choi S, Kim E, Shin SK, Yi H. Thalassotalea crassostreae sp. nov., isolated from Pacific oyster. Int J Syst Evol Microbiol 2017; 67:2195–2198 [View Article] [PubMed]
    [Google Scholar]
  17. Sheu SY, Liu LP, Tang SL, Chen WM. Thalassotalea euphylliae sp. nov., isolated from the torch coral Euphyllia glabrescens. Int J Syst Evol Microbiol 2016; 66:5039–5045 [View Article] [PubMed]
    [Google Scholar]
  18. Thompson FL, Barash Y, Sawabe T, Sharon G, Swings J et al. Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. Int J Syst Evol Microbiol 2006; 56:365–368 [View Article] [PubMed]
    [Google Scholar]
  19. Chen WM, Liu LP, Chen CA, Wang JT, Sheu SY. Thalassotalea montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int J Syst Evol Microbiol 2016; 66:4077–4084 [View Article] [PubMed]
    [Google Scholar]
  20. Kang H, Kim H, Nam I-Y, Joung Y, Jang TY et al. Thalassotalea litorea sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2017; 67:2268–2273 [View Article] [PubMed]
    [Google Scholar]
  21. Li A-Q, Zhang C, Li D-H, Qi X-Q, Meng L et al. Parasedimentitalea psychrophila sp. nov., a psychrophilic bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2023; 73: [View Article] [PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  26. Vallenet D, Calteau A, Dubois M, Amours P, Bazin A et al. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res 2020; 48:D579–D589 [View Article] [PubMed]
    [Google Scholar]
  27. Bairoch A, Bougueleret L, Altairac S, Amendolia V, Auchincloss A. The universal protein resource (UniProt). Nucleic Acids Res 2008; 36:D190–D195 [View Article] [PubMed]
    [Google Scholar]
  28. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 2023; 51:D587–D592 [View Article] [PubMed]
    [Google Scholar]
  29. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M et al. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 2020; 48:D445–D453 [View Article] [PubMed]
    [Google Scholar]
  30. Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science 1997; 278:631–637 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  33. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  35. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  36. Costa MSD, Albuquerque L, Nobre MF, Wait R. The identification of polar lipids in prokaryotes. In Methods in Microbiology vol 38 2011 pp 165–181
    [Google Scholar]
  37. Tindall BJ. The role of incorrect citation of the International Code of Nomenclature of Prokaryotes and subsequent misinterpretation in causing unnecessary nomenclatural confusion. Int J Syst Evol Microbiol 2019; 69:2621–2625 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006399
Loading
/content/journal/ijsem/10.1099/ijsem.0.006399
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error