1887

Abstract

A Gram-negative, strictly aerobic bacterial strain was isolated from asymptomatic leaf tissue of a wild yam plant. Optimal growth was observed at 28 °C and pH 7, and catalase and oxidase activities were detected. Polyphasic taxonomic and comparative genomics revealed that strain LMG 33091 represents a novel species of . The nearest phylogenetic neighbours of strain LMG 33091 were NBRC 14164 (with 99.79 % 16S rRNA sequence identity), KL28 (99.28 %) and (99.07 %) ATCC 23835. MALDI-TOF MS analysis yielded distinct profiles for strain LMG 33091 and the nearest phylogenetic neighbours. Average nucleotide identity analyses between the whole genome sequence of strain LMG 33091 and of the type strains of its nearest-neighbour taxa yielded values below the species delineation threshold and thus confirmed that the strain represented a novel species, for which we propose the name sp. nov., with strain LMG 33091 (=GMI12077= CFBP 9143) as the type strain.

Keyword(s): endosphere , Pseudomonas and putida group
Funding
This study was supported by the:
  • Agence Nationale de la Recherche (Award ANR-11-IDEX-0002-02)
    • Principle Award Recipient: AurelienCarlier
  • Agence Nationale de la Recherche (Award ANR-10-LABX-41)
    • Principle Award Recipient: AurelienCarlier
  • Agence Nationale de la Recherche (Award ANR-19-TERC-0004-01)
    • Principle Award Recipient: AurelienCarlier
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006395
2024-06-28
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/6/ijsem006395.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006395&mimeType=html&fmt=ahah

References

  1. Migula N. Arbeiten aus dem Bakteriologischen Institut der Technischen Hochschule zu Karlsruhe 1894
    [Google Scholar]
  2. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [View Article] [PubMed]
    [Google Scholar]
  3. Nikel PI, Martínez-García E, de Lorenzo V. Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 2014; 12:368–379 [View Article] [PubMed]
    [Google Scholar]
  4. Girard L, Lood C, Höfte M, Vandamme P, Rokni-Zadeh H et al. The ever-expanding Pseudomonas genus: description of 43 new species and partition of the Pseudomonas putida group. Microorganisms 2021; 9:1766 [View Article] [PubMed]
    [Google Scholar]
  5. Acar T, Moreau S, Coen O, De Meyer F, Leroux O et al. Motility-independent vertical transmission of bacteria in leaf symbiosis. mBio 2022; 13:e0103322 [View Article] [PubMed]
    [Google Scholar]
  6. De Meyer F, Danneels B, Acar T, Rasolomampianina R, Rajaonah MT et al. Adaptations and evolution of a heritable leaf nodule symbiosis between Dioscorea sansibarensis and Orrella dioscoreae. ISME J 2019; 13:1831–1844 [View Article] [PubMed]
    [Google Scholar]
  7. Acar T, Moreau S, Jardinaud M-F, Houdinet G, Maviane-Macia F et al. The association between Dioscorea sansibarensis and Orrella dioscoreae as a model for hereditary leaf symbiosis; 2023
  8. Niemann S, Pühler A, Tichy HV, Simon R, Selbitschka W. Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 1997; 82:477–484 [View Article] [PubMed]
    [Google Scholar]
  9. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article] [PubMed]
    [Google Scholar]
  10. Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K et al. Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 2007; 57:1647–1652 [View Article] [PubMed]
    [Google Scholar]
  11. Coenye T, Falsen E, Vancanneyt M, Hoste B, Govan JRW et al. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Evol Microbiol 1999; 49:405–413 [View Article]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  15. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  16. Wilson K. Preparation of genomic DNA from bacteria. Curr Protocols Mol Biol 2001; 56: [View Article]
    [Google Scholar]
  17. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  18. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 2015; 16:294 [View Article] [PubMed]
    [Google Scholar]
  19. Chen S. Ultrafast one‐pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2023; 2:e107 [View Article]
    [Google Scholar]
  20. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  22. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2021; 49:D10–D17 [View Article] [PubMed]
    [Google Scholar]
  23. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  24. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  25. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  26. Dumolin C, Aerts M, Verheyde B, Schellaert S, Vandamme T et al. Introducing SPEDE: high-throughput dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption-ionization time of flight mass spectrometry data. mSystems 2019; 4:e00437-19 [View Article] [PubMed]
    [Google Scholar]
  27. Strohalm M, Kavan D, Novák P, Volný M, Havlícek V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 2010; 82:4648–4651 [View Article] [PubMed]
    [Google Scholar]
  28. Smibert JF, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  29. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinform 2009; 10:421 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  31. Néron B, Denise R, Coluzzi C, Touchon M, Rocha EPC. 2023; MacSyFinder v2: improved modelling and search engine to identify molecular systems in genomes. Peer Commun J 3: [View Article]
    [Google Scholar]
  32. Pu M, Rowe-Magnus DA. A Tad pilus promotes the establishment and resistance of Vibrio vulnificus biofilms to mechanical clearance. NPJ Biofilms Microbiom 2018; 4:10 [View Article] [PubMed]
    [Google Scholar]
  33. Planet PJ, Kachlany SC, Fine DH, DeSalle R, Figurski DH. The widespread colonization island of Actinobacillus actinomycetemcomitans. Nat Genet 2003; 34:193–198 [View Article] [PubMed]
    [Google Scholar]
  34. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  35. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  36. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:D309–D314 [View Article] [PubMed]
    [Google Scholar]
  37. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article] [PubMed]
    [Google Scholar]
  38. Sudarsan S, Blank LM, Dietrich A, Vielhauer O, Takors R et al. Dynamics of benzoate metabolism in Pseudomonas putida KT2440. Metab Eng Commun 2016; 3:97–110 [View Article] [PubMed]
    [Google Scholar]
  39. Zheng J, Ge Q, Yan Y, Zhang X, Huang L et al. dbCAN3: automated carbohydrate-active enzyme and substrate annotation. Nucleic Acids Res 2023; 51:W115–W121 [View Article] [PubMed]
    [Google Scholar]
  40. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  41. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 2023; 51:D690–D699 [View Article] [PubMed]
    [Google Scholar]
  42. Kaleta MF, Petrova OE, Zampaloni C, Garcia-Alcalde F, Parker M et al. A previously uncharacterized gene, PA2146, contributes to biofilm formation and drug tolerance across the ɣ-proteobacteria. NPJ Biofilms Microbiomes 2022; 8:54 [View Article] [PubMed]
    [Google Scholar]
  43. Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006395
Loading
/content/journal/ijsem/10.1099/ijsem.0.006395
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error