1887

Abstract

Two Gram-stain-negative strains, designed SYSU M86414 and SYSU M84420, were isolated from marine sediment samples of the South China Sea (Sansha City, Hainan Province, PR China). These strains were aerobic and could grow at pH 6.0–8.0 (optimum, pH 7.0), 4–37 °C (optimum, 28 °C), and in the presence of 0–10 % NaCl (w/v; optimum 3 %). The predominant respiratory menaquinone of strains SYSU M86414 and SYSU M84420 was MK-6. The primary cellular polar lipid was phosphatidylethanolamine. The major cellular fatty acids (>10 %) in both strains were iso-C, iso-C G, and iso-C 3-OH. The DNA G+C content of strains SYSU M86414 and SYSU M84420 were both 42.10 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that these novel strains belonged to the genus and strain SYSU M86414 showed the highest 16S rRNA gene sequence similarity to JCM 11811 (98.83 %), followed by BC31-1-A7 (98.62 %), while strain SYSU M84420 had highest 16S rRNA gene sequence similarity to JCM 11811 (98.76 %) and BC31-1-A7 (98.55 %). Based on the results of polyphasic analyses, strains SYSU M86414 and SYSU M84420 should be considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain of the proposed novel isolate is SYSU M86414 (=GDMCC 1.3806=KCTC 102040).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 32200090)
    • Principle Award Recipient: LiJia-Ling
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006388
2024-05-15
2024-05-20
Loading full text...

Full text loading...

References

  1. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article] [PubMed]
    [Google Scholar]
  2. Bae SS, Kwon KK, Yang SH, Lee H-S, Kim S-J et al. Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol 2007; 57:1050–1054 [View Article] [PubMed]
    [Google Scholar]
  3. Yoon B-J, Oh D-C. Spongiibacterium flavum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine sponge Halichondria oshoro, and emended descriptions of the genera Croceitalea and Flagellimonas. Int J Syst Evol Microbiol 2012; 62:1158–1164 [View Article] [PubMed]
    [Google Scholar]
  4. Choi S, Lee JH, Kang JW, Choe HN, Seong CN. Flagellimonas aquimarina sp. nov., and transfer of Spongiibacterium flavum Yoon and Oh 2012 and S. pacificum Gao et al. 2015 to the genus Flagellimonas Bae et al. 2007 as Flagellimonas flava comb. nov. and F. pacifica comb. nov., respectively. Int J Syst Evol Microbiol 2018; 68:3266–3272 [View Article] [PubMed]
    [Google Scholar]
  5. García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of Bacteroidetes. Front Microbiol 2019; 10:2083 [View Article] [PubMed]
    [Google Scholar]
  6. Deshmukh UB, Oren A. Proposal of Allomuricauda gen. nov. and Allofranklinella gen. nov. as replacement names for the illegitimate prokaryotic generic names Muricauda and Franklinella, respectively. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  7. Oren A, Arahal DR, Göker M, Moore ERB, Rossello-Mora R et al. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2022 Revision). Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
  8. Molinari Novoa EA, Deshmukh UB, Oren A. Reclassification of Allomuricauda and Muricauda species as members of the genus Flagellimonas Bae et al. 2007 and emended description of the genus Flagellimonas. Int J Syst Evol Microbiol 2024; 74: [View Article]
    [Google Scholar]
  9. Wang D, Wu Y, Liu Y, Liu B, Gao Y et al. Muricauda abyssi sp. nov., a marine bacterium isolated from deep seawater of the Mariana Trench. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  10. Liu S-q, Sun Q-l, Sun Y-y, Yu C, Sun L. Muricauda iocasae sp. nov., isolated from deep sea sediment of the South China Sea. Int J Syst Evol Microbiol 2018; 68:2538–2544 [View Article] [PubMed]
    [Google Scholar]
  11. Kim J, Kim KH, Chun BH, Khan SA, Jeon CO. Flagellimonas algicola sp. nov., isolated from a marine red alga, Asparagopsis taxiformis. Curr Microbiol 2020; 77:294–299 [View Article] [PubMed]
    [Google Scholar]
  12. Arun AB, Chen W-M, Lai W-A, Chao J-H, Rekha PD et al. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009; 59:2738–2742 [View Article] [PubMed]
    [Google Scholar]
  13. Prabhu S, Rekha PD, Arun AB. Zeaxanthin biosynthesis by members of the genus Muricauda. Pol J Microbiol 2014; 63:115–119 [PubMed]
    [Google Scholar]
  14. Cappello S, Volta A, Santisi S, Morici C, Mancini G et al. Oil-degrading bacteria from a membrane bioreactor (BF-MBR) system for treatment of saline oily waste: isolation, identification and characterization of the biotechnological potential. Int Biodeter Biodegrad 2016; 110:235–244 [View Article]
    [Google Scholar]
  15. Mikkelsen MD, Tran VHN, Meier S, Nguyen TT, Holck J et al. Structural and functional characterization of the novel endo-α(1,4)-fucoidanase Mef1 from the marine bacterium Muricauda eckloniae. Acta Crystallogr D Struct Biol 2023; 79:1026–1043 [View Article] [PubMed]
    [Google Scholar]
  16. Yang Z-W, Lian Z-H, Liu L, Fang B-Z, Li W-J et al. Cultivation strategies for prokaryotes from extreme environments. iMeta 2023; 2:e123 [View Article]
    [Google Scholar]
  17. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  18. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press; 1960 [View Article]
    [Google Scholar]
  19. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  20. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article] [PubMed]
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology The American Society for Microbiology; 1994
    [Google Scholar]
  22. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article] [PubMed]
    [Google Scholar]
  23. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. Microbiology 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  24. Tamaoka J. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1986; 54:31–36 [View Article]
    [Google Scholar]
  25. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  26. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4‐diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  27. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  29. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  36. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2014; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  37. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  38. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article] [PubMed]
    [Google Scholar]
  39. Li RQ, Zhu HM, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article] [PubMed]
    [Google Scholar]
  40. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  41. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  42. Liu D, Zhang Y, Fan G, Sun D, Zhang X et al. IPGA: a handy integrated prokaryotes genome and pan‐genome analysis web service. iMeta 2022; 1:e55 [View Article]
    [Google Scholar]
  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  44. Hitch TCA, Riedel T, Oren A, Overmann J, Lawley TD et al. Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Commun 2021; 1:16 [View Article] [PubMed]
    [Google Scholar]
  45. Wayne LG. International committee on systematic bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. J Appl Bacteriol 1988; 268:433–434 [View Article] [PubMed]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  47. Liang J, Yin Q, Zheng X, Wang Y, Song Z-M et al. Muricauda Onchidii sp. nov., isolated from a marine invertebrate from South China sea, and transfers of Flagellimonas algicola, Flagellimonas pacifica and Flagellimonas maritima to Muricauda algicola comb. nov., Muricauda parva nom. nov. and Muricauda aurantiaca nom. nov., respectively, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  48. Shin J-Y, Park J-S. Muricauda spongiicola sp. nov., isolated from the sponge Callyspongia elongata. Int J Syst Evol Microbiol 2023; 73: [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006388
Loading
/content/journal/ijsem/10.1099/ijsem.0.006388
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error