1887

Abstract

Two novel Gram-negative, aerobic, rod-shaped, non-motile bacteria, strains TBRC 10068 and TBRC 16381, were isolated from a fluid sample from a close-pitcher cup () and an insect sample (), respectively. Comparing the 16S rRNA gene sequences with those found in EzBioCloud’s publicly available databases revealed that the two strains exhibited a close genetic relationship with A911; the calculated sequence similarities were 98.56 and 97.70  %, respectively. The average nucleotide identity and digital DNA–DNA hybridization values of the two strains, as well as those of their closely related type strains, were found to be lower than the species demarcation threshold of 95 and 70 %, respectively. The phylogenomic analysis of strains TBRC 10068 and TBRC 16381 showed that they belong to the genus . However, they formed distinct lineages separate from all other strains of r by use of 81 bacterial core genes. In addition, the comparative genomic analysis revealed that the core orthologues of strains TBRC 10068 and TBRC 16381, compared to the closely related type strains of species, had distinct genetic profiles. Strain TBRC 10068 contained 163 unique genes, whereas strain TBRC 16381 contained 83. The three species possessed Q-9 as the primary isoprenoid quinone homologue. The results of a polyphasic taxonomic investigation indicated that strains TBRC 10068 and TBRC 16381 represent two separate new species within the genus . The species were designated as sp. nov. with the type strain TBRC 10068 (=KCTC 92798) and sp. nov. with the type strain TBRC 16381 (=KCTC 92799).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006385
2024-05-16
2024-06-19
Loading full text...

Full text loading...

References

  1. Roh SW, Nam Y-D, Chang H-W, Kim K-H, Kim M-S et al. Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl Environ Microbiol 2008; 74:6171–6177 [View Article] [PubMed]
    [Google Scholar]
  2. Guzman J, Vilcinskas A. Genome analysis suggests the bacterial family Acetobacteraceae is a source of undiscovered specialized metabolites. Antonie van Leeuwenhoek 2022; 115:41–58 [View Article] [PubMed]
    [Google Scholar]
  3. Kim E-K, Kim S-H, Nam H-J, Choi MK, Lee K-A et al. Draft genome sequence of Commensalibacter intestini A911T, a symbiotic bacterium isolated from Drosophila melanogaster intestine. J Bacteriol 2012; 194:1246 [View Article] [PubMed]
    [Google Scholar]
  4. Oren A, Garrity G. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:3313–3314 [View Article]
    [Google Scholar]
  5. Parte AC. LPSN - List of Prokaryotic Names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  6. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D6 [View Article] [PubMed]
    [Google Scholar]
  7. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2021; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  8. Botero J, Sombolestani AS, Cnockaert M, Peeters C, Borremans W et al. A phylogenomic and comparative genomic analysis of Commensalibacter, a versatile insect symbiont. Anim Microbiome 2023; 5:25 [View Article] [PubMed]
    [Google Scholar]
  9. Botero J, Vandamme P. Proposal of three novel insect-associated Commensalibacter species: Commensalibacter melissae sp. nov., Commensalibacter communis sp. nov. and Commensalibacter papalotli sp. nov. Int J Syst Evol Microbiol 2024; 74: [View Article]
    [Google Scholar]
  10. Jeyaprakash A, Hoy MA, Allsopp MH. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 2003; 84:96–103 [View Article] [PubMed]
    [Google Scholar]
  11. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011; 20:619–628 [View Article] [PubMed]
    [Google Scholar]
  12. Erban T, Ledvinka O, Kamler M, Hortova B, Nesvorna M et al. Bacterial community associated with worker honeybees (Apis mellifera) affected by European foulbrood. PeerJ 2017; 5:e3816 [View Article] [PubMed]
    [Google Scholar]
  13. Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ et al. Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microb Ecol 2017; 73:685–698 [View Article] [PubMed]
    [Google Scholar]
  14. Siozios S, Moran J, Chege M, Hurst GDD, Paredes JC. Complete reference genome assembly for Commensalibacter sp. strain AMU001, an acetic acid bacterium isolated from the gut of honey bees. Microbiol Resour Announc 2019; 8: [View Article] [PubMed]
    [Google Scholar]
  15. Li L, Praet J, Borremans W, Nunes OC, Manaia CM et al. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65:267–273 [View Article] [PubMed]
    [Google Scholar]
  16. Servín-Garcidueñas LE, Sánchez-Quinto A, Martínez-Romero E. Draft genome sequence of Commensalibacter papalotli MX01, a symbiont identified from the guts of overwintering monarch butterflies. Genome Announc 2014; 2:e00128-14 [View Article] [PubMed]
    [Google Scholar]
  17. Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T. Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 2012; 78:4149–4156 [View Article] [PubMed]
    [Google Scholar]
  18. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G et al. Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 2010; 76:6963–6970 [View Article] [PubMed]
    [Google Scholar]
  19. Ravenscraft A, Kish N, Peay K, Boggs C. No evidence that gut microbiota impose a net cost on their butterfly host. Mol Ecol 2019; 28:2100–2117 [View Article] [PubMed]
    [Google Scholar]
  20. Bonilla-Rosso G, Paredes Juan C, Das S, Ellegaard K, Emery O et al. Acetobacteraceae in the honey bee gut comprise two distant clades with diverging metabolism and ecological niches. bioRxiv 2019; 861260 [View Article]
    [Google Scholar]
  21. Santamaría RI, Martínez-Carrasco A, Sánchez de la Nieta R, Torres-Vila LM, Bonal R et al. Characterization of actinomycetes strains isolated from the intestinal tract and feces of the larvae of the longhorn beetle Cerambyx welensii. Microorganisms 2020; 8:2013 [View Article] [PubMed]
    [Google Scholar]
  22. Suriyachadkun C, Ngaemthao W, Pujchakarn T, Chamroensaksri N, Niemhom N et al. Glycomyces amatae sp. nov., isolated from a yellow-ringed grass moth (Amata sperbius). Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  23. Welch DF, Muszynski MJ, Pai CH, Marcon MJ, Hribar MM et al. Selective and differential medium for recovery of Pseudomonas cepacia from the respiratory tracts of patients with cystic fibrosis. J Clin Microbiol 1987; 25:1730–1734 [View Article] [PubMed]
    [Google Scholar]
  24. Yukphan P, Potacharoen W, Tanasupawat S, Tanticharoen M, Yamada Y. Asaia krungthepensis sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2004; 54:313–316 [View Article] [PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  26. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  27. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  28. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  30. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  31. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  33. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  36. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  37. Lu H, Giordano F, Ning Z. Oxford nanopore MinION sequencing and genome assembly. Genom Proteom Bioinform 2016; 14:265–279 [View Article] [PubMed]
    [Google Scholar]
  38. Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M et al. Assembly of long error-prone reads using de Bruijn graphs. Proc Natl Acad Sci USA 2016; 113:E8396–E8405 [View Article] [PubMed]
    [Google Scholar]
  39. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  40. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  41. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  42. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  43. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  44. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  45. Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 2017; 33:2938–2940 [View Article] [PubMed]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  48. Kim J, Na S-I, Kim D, Chun J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615 [View Article] [PubMed]
    [Google Scholar]
  49. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  50. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 2014; 30:3123–3124 [View Article] [PubMed]
    [Google Scholar]
  51. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial systematics. In Colwell RR, Grigorova R. eds Methods in Microbiology Academic Press; 1988 pp 161–207
    [Google Scholar]
  52. Sasser M. ed Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Technical Note No. 101 Newark: MIDI Inc; 1990
    [Google Scholar]
  53. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  54. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006385
Loading
/content/journal/ijsem/10.1099/ijsem.0.006385
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error