Skip to content
1887

Abstract

Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.

Funding
This study was supported by the:
  • CNPq (Award 465133/2014-4)
    • Principle Award Recipient: MariangelaHungria
  • IRNASA/CSIC (Award CLU-2019-05)
    • Principle Award Recipient: AlvaroPeix
  • Universidad Nacional Autónoma de México (Award PAPIIT)
    • Principle Award Recipient: EsperanzaMartinez-Romero
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006373
2024-05-14
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/5/ijsem006373.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006373&mimeType=html&fmt=ahah

References

  1. Dénarié J, Debellé F, Promé JC. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 1996; 65:503–535 [View Article] [PubMed]
    [Google Scholar]
  2. Teulet A, Camuel A, Perret X, Giraud E. The versatile roles of type III secretion systems in rhizobium-legume symbioses. Annu Rev Microbiol 2022; 76:45–65 [View Article] [PubMed]
    [Google Scholar]
  3. Yang L-L, Jiang Z, Li Y, Wang E-T, Zhi X-Y. Plasmids related to the symbiotic nitrogen fixation are not only cooperated functionally but also may have evolved over a time span in family Rhizobiaceae. Genome Biol Evol 2020; 12:2002–2014 [View Article] [PubMed]
    [Google Scholar]
  4. Gamez-Reyes A, Becerra-Lobato N, Ramírez-Trujillo JA, Martínez-Romero E, Dunn MF et al. The Rhizobium leucaenae CFN 299 pSym plasmid contains genes expressed in free life and symbiosis, as well as two replication systems. Ann Microbiol 2017; 67:263–273 [View Article]
    [Google Scholar]
  5. Ormeño-Orrillo E, Menna P E, Almeida LG, Ollero FJ, Nicolás MF et al. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012; 13:1–26
    [Google Scholar]
  6. Lagares A, Sanjuán J, Pistorio M. The plasmid mobilome of the model plant-symbiont Sinorhizobium meliloti: coming up with new questions and answers. Microbiol Spectr 2014; 2:10–128 [View Article] [PubMed]
    [Google Scholar]
  7. Colombi E, Perry BJ, Sullivan JT, Bekuma AA, Terpolilli JJ et al. Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microb Genom 2021; 7:000657 [View Article] [PubMed]
    [Google Scholar]
  8. López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA et al. Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 2012; 68:149–158 [View Article] [PubMed]
    [Google Scholar]
  9. Fagorzi C, Ilie A, Decorosi F, Cangioli L, Viti C et al. Symbiotic and nonsymbiotic members of the genus Ensifer (syn. Sinorhizobium) are separated into two clades based on comparative genomics and high-throughput phenotyping. Genome Biol Evol 2020; 12:2521–2534 [View Article] [PubMed]
    [Google Scholar]
  10. Gano-Cohen KA, Stokes PJ, Blanton MA, Wendlandt CE, Hollowell AC et al. Nonnodulating Bradyrhizobium spp. modulate the benefits of legume-rhizobium mutualism. Appl Environ Microbiol 2016; 82:5259–5268 [View Article] [PubMed]
    [Google Scholar]
  11. Hollowell AC, Regus JU, Gano KA, Bantay R, Centeno D et al. Epidemic spread of symbiotic and non-symbiotic Bradyrhizobium genotypes across California. Microb Ecol 2016; 71:700–710 [View Article] [PubMed]
    [Google Scholar]
  12. Segovia L, Piñero D, Palacios R, Martínez-Romero E. Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl Environ Microbiol 1991; 57:426–433 [View Article] [PubMed]
    [Google Scholar]
  13. Soenens A, Imperial J. Novel, non-symbiotic isolates of Neorhizobium from a dryland agricultural soil. PeerJ 2018; 6:e4776 [View Article] [PubMed]
    [Google Scholar]
  14. Higashi S. Transfer of clover infectivity of Rhizobium trifolii to Rhizobium phaseoli as mediated by an episomic factor. J Gen Appl Microbiol 1967; 13:391–403 [View Article]
    [Google Scholar]
  15. Dunican LK, Cannon FC. The genetic control of symbiotic properties in Rhizobium: evidence for plasmid control. Plant Soil 1971; 35:73–79 [View Article]
    [Google Scholar]
  16. Johnston AWB, Beynon JL, Buchanan-wollaston AV, Setchell SM, Hirsch PR et al. High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature 1978; 276:634–636 [View Article] [PubMed]
    [Google Scholar]
  17. Rogel MA, Hernández-Lucas I, Kuykendall LD, Balkwill DL, Martinez-Romero E. Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 2001; 67:3264–3268 [View Article] [PubMed]
    [Google Scholar]
  18. Martínez E, Palacios R, Sánchez F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 1987; 169:2828–2834 [View Article] [PubMed]
    [Google Scholar]
  19. Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol 2010; 8:e1000280 [View Article] [PubMed]
    [Google Scholar]
  20. Ling J, Wang H, Wu P, Li T, Tang Y et al. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc Natl Acad Sci U S A 2016; 113:13875–13880 [View Article] [PubMed]
    [Google Scholar]
  21. Bañuelos-Vazquez LA, Castellani LG, Luchetti A, Romero D, Torres Tejerizo GA et al. Role of plant compounds in the modulation of the conjugative transfer of pRet42a. PLoS One 2020; 15:e0238218 [View Article] [PubMed]
    [Google Scholar]
  22. He X, Chang W, Pierce DL, Seib LO, Wagner J et al. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 2003; 185:809–822 [View Article] [PubMed]
    [Google Scholar]
  23. Jordan DC. Genus I Rhizobium Frank 1889, 338AL. In Krieg NR, Holt JG. eds Bergey’s Manual of Systematic Bacteriology vol 1 Baltimore: Williams & Wilkins; 1984 pp 235–242
    [Google Scholar]
  24. Rogel MA, Ormeño-Orrillo E, Martinez Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011; 34:96–104 [View Article] [PubMed]
    [Google Scholar]
  25. Hernández-Oaxaca D, Claro K, Rogel MA, Rosenblueth M, Martinez-Romero J et al. Novel symbiovars ingae, lysilomae and lysilomaefficiens in bradyrhizobia from tree-legume nodules. Syst Appl Microbiol 2023; 46:126433 [View Article] [PubMed]
    [Google Scholar]
  26. Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H et al. Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 2015; 38:287–291 [View Article] [PubMed]
    [Google Scholar]
  27. Flores-Félix JD, Menéndez E, Peix A, García-Fraile P, Velázquez E. History and current taxonomic status of genus Agrobacterium. Syst Appl Microbiol 2020; 43:126046 [View Article] [PubMed]
    [Google Scholar]
  28. Dye DW, Bradbury J, Goto M, Hayward AC, Lelliott RA et al. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev Plant pathol 1980; 59:153–168
    [Google Scholar]
  29. Mousavi SA, Young JPW. International committee on systematics of prokaryotes subcommittee on the taxonomy of rhizobia and agrobacteria: minutes of the closed annual meeting, videoconference on 2 October 2023, followed by online discussion until 31 December 2023. Int J Syst Evol Microbiol 2024; 74:006276 [View Article] [PubMed]
    [Google Scholar]
  30. Oren A, Arahal DR, Göker M, Moore ERB, Rossello-Mora R et al. International code of nomenclature of prokaryotes. Prokaryotic code (2022 Revision). Int J Syst Evol Microbiol 2023; 73:005585 [View Article]
    [Google Scholar]
  31. De Sousa BFS, Castellane TCL, Tighilt L, Lemos E de M, Rey L. Rhizobial exopolysaccharides and type VI secretion systems: a promising way to improve nitrogen acquisition by legumes. Front Agron 2021; 3:661468 [View Article]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  33. Young JPW, Moeskjær S, Afonin A, Rahi P, Maluk M et al. Defining the Rhizobium leguminosarum species complex. Genes 2021; 12:111 [View Article] [PubMed]
    [Google Scholar]
  34. Delamuta JRM, Menna P, Ribeiro RA, Hungria M. Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Syst Appl Microbiol 2017; 40:254–265 [View Article] [PubMed]
    [Google Scholar]
  35. Paulitsch F, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M. Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species. Syst Appl Microbiol 2020; 43:126151 [View Article] [PubMed]
    [Google Scholar]
  36. Bouhnik O, ElFaik S, Alami S, Talbi C, Lamin H et al. Ensifer fredii symbiovar vachelliae nodulates endemic Vachellia gummifera in semiarid Moroccan areas. Syst Appl Microbiol 2019; 42:125999 [View Article] [PubMed]
    [Google Scholar]
  37. Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 2020; 13:1314–1335 [View Article] [PubMed]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  39. Villegas MDC, Rome S, Mauré L, Domergue O, Gardan L et al. Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti. Syst Appl Microbiol 2006; 29:526–538 [View Article]
    [Google Scholar]
  40. Ramírez-Bahena MH, Flores-Félix JD, Chahboune R, Toro M, Velázquez E et al. Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America. Syst Appl Microbiol 2016; 39:378–383 [View Article] [PubMed]
    [Google Scholar]
  41. Duan YF, Grogan P, Walker VK, diCenzo GC. Whole genome sequencing of mesorhizobia isolated from northern Canada. Can J Microbiol 2022; 68:661–673 [View Article]
    [Google Scholar]
  42. Laadraoui C, Alami S, Lamrabet M, Bennis M, Bouhnik O et al. Identification of the symbiovar maamori in Mesorhizobium isolated from nodules of Ononis repens in the Maamora forest (Morocco). Symbiosis 2023; 89:95–106 [View Article]
    [Google Scholar]
  43. Radeva G, Jurgens G, Niemi M, Nick G, Suominen L et al. Description of two biovars in the Rhizobium galegae species: biovar orientalis and biovar officinalis. Syst Appl Microbiol 2001; 24:192–205 [View Article] [PubMed]
    [Google Scholar]
  44. Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E. Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 2005; 14:4033–4050 [View Article] [PubMed]
    [Google Scholar]
  45. Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R. Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch Microbiol 2007; 187:79–85 [View Article] [PubMed]
    [Google Scholar]
  46. Mnasri B, Saïdi S, Chihaoui S-A, Mhamdi R. Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst Appl Microbiol 2012; 35:263–269 [View Article] [PubMed]
    [Google Scholar]
  47. Msaddak A, Rejili M, Durán D, Rey L, Palacios JM et al. Definition of two new symbiovars, sv. lupini and sv. mediterranense, within the genera Bradyrhizobium and Phyllobacterium efficiently nodulating Lupinus micranthus in Tunisia. Syst Appl Microbiol 2018; 41:487–493 [View Article] [PubMed]
    [Google Scholar]
  48. Missbah El Idrissi M, Lamin H, ElFaik S, Tortosa G, Peix A et al. Microvirga sp. symbiovar mediterranense nodulates Lupinus cosentinii grown wild in Morocco. Journal of Applied Microbiology 2020; 128:1109–1118 [View Article]
    [Google Scholar]
  49. Msaddak A, Rejili M, Durán D, Mars M, Palacios JM et al. Microvirga tunisiensis sp. nov., a root nodule symbiotic bacterium isolated from Lupinus micranthus and L. luteus grown in Northern Tunisia. Syst Appl Microbiol 2019; 42:126015 [View Article]
    [Google Scholar]
  50. Wang ET, Rogel MA, Garcia-de los Santos A, Martinez-Romero J, Cevallos MA et al. Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Evol Microbiol 1999; 49:1479–1491 [View Article]
    [Google Scholar]
  51. Rogel MA, Bustos P, Santamaría RI, González V, Romero D et al. Genomic basis of symbiovar mimosae in Rhizobium etli. BMC Genomics 2014; 15:575 [View Article] [PubMed]
    [Google Scholar]
  52. Mishra RPN, Tisseyre P, Melkonian R, Chaintreuil C, Miché L et al. Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. FEMS Microbiol Ecol 2012; 79:487–503 [View Article] [PubMed]
    [Google Scholar]
  53. Rejili M, BenAbderrahim MA, Mars M, Sherrier JD. Novel putative rhizobial species with different symbiovars nodulate Lotus creticus and their differential preference to distinctive soil properties. FEMS Microbiol Lett 2020; 367:fnaa084 [View Article] [PubMed]
    [Google Scholar]
  54. Lamin H, Alami S, Bouhnik O, Bennis M, Benkritly S et al. Identification of the endosymbionts from Sulla spinosissima growing in a lead mine tailings in Eastern Morocco as Mesorhizobium camelthorni sv. aridi. J Appl Microbiol 2021; 130:948–959 [View Article] [PubMed]
    [Google Scholar]
  55. Sannazzaro AI, Torres Tejerizo G, Fontana MF, Cumpa Velásquez LM, Hansen LH et al. Mesorhizobium sanjuanii sp. nov., isolated from nodules of Lotus tenuis in the saline-alkaline lowlands of Flooding Pampa, Argentina. Int J Syst Evol Microbiol 2018; 68:2936–2942 [View Article] [PubMed]
    [Google Scholar]
  56. León-Barrios M, Flores-Félix J-D, Pérez-Yépez J, Ramirez-Bahena M-H, Pulido-Suárez L et al. Definition of the novel symbiovar canariense within Mesorhizobium neociceri sp. nov., a new species of genus Mesorhizobium nodulating Cicer canariense in the “Caldera de Taburiente” National Park (La Palma, Canary Islands). Syst Appl Microbiol 2021; 44:126237 [View Article] [PubMed]
    [Google Scholar]
  57. Lortet G, Méar N, Lorquin J, Dreyfus B, Rosenberg C et al. Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol Plant Microbe Interact 1996; 9:736–747 [View Article]
    [Google Scholar]
  58. Haukka K, Lindström K, Young JP. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 1998; 64:419–426 [View Article] [PubMed]
    [Google Scholar]
  59. Ba S, Willems A, de Lajudie P, Roche P, Jeder H et al. Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 2002; 25:130–145 [View Article] [PubMed]
    [Google Scholar]
  60. Sugawara M, Epstein B, Badgley BD, Unno T, Xu L et al. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 2013; 14:R17 [View Article] [PubMed]
    [Google Scholar]
  61. Rincón-Rosales R, Lloret L, Ponce E, Martínez-Romero E. Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum. FEMS Microbiol Ecol 2009; 67:103–117 [View Article] [PubMed]
    [Google Scholar]
  62. Rincón-Rosales R, Rogel MA, Guerrero G, Rincón-Molina CI, López-López A et al. Genomic data of acaciella nodule Ensifer mexicanus ITTG R7T. Microbiol Resour Announc 2021; 10:10–128 [View Article]
    [Google Scholar]
  63. Tampakaki AP, Fotiadis CT, Ntatsi G, Savvas D. A novel symbiovar (aegeanense) of the genus Ensifer nodulates Vigna unguiculata. J Sci Food Agric 2017; 97:4314–4325 [View Article] [PubMed]
    [Google Scholar]
  64. Flores-Félix JD, Sánchez-Juanes F, Araujo J, Díaz-Alcántara CA, Velázquez E et al. Two novel symbiovars of Bradyrhizobium yuanmingense, americaense and caribense, the symbiovar tropici of Bradyrhizobium pachyrhizi and the symbiovar cajani of Bradyrhizobium cajani are microsymbionts of the legume Cajanus cajan in Dominican Republic. Syst Appl Microbiol 2023; 46:126454 [View Article] [PubMed]
    [Google Scholar]
  65. Mohamad R, Willems A, Le Quéré A, Maynaud G, Pervent M et al. Mesorhizobium delmotii and Mesorhizobium prunaredense are two new species containing rhizobial strains within the symbiovar anthyllidis. Syst Appl Microbiol 2017; 40:135–143 [View Article] [PubMed]
    [Google Scholar]
  66. Mohamad R, Willems A, Le Quéré A, Pervent M, Maynaud G et al. Mesorhizobium ventifaucium sp. nov. and Mesorhizobium escarrei sp. nov., two novel root-nodulating species isolated from Anthyllis vulneraria. Syst Appl Microbiol 2022; 45:126341 [View Article] [PubMed]
    [Google Scholar]
  67. Zhang J, Feng Y, Wang J, Wang E, Andrews M. Diverse Bradyrhizobium spp. with similar symbiosis genes nodulate peanut in different regions of China: characterization of symbiovar sv. Arachis. Plants 2023; 12:3776 [View Article] [PubMed]
    [Google Scholar]
  68. Zhang J, Guo C, Chen W, de Lajudie P, Zhang Z et al. Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China. Int J Syst Evol Microbiol 2018; 68:1930–1936 [View Article] [PubMed]
    [Google Scholar]
  69. Nandasena KG, O’Hara GW, Tiwari RP, Willlems A, Howieson JG. Mesorhizobium ciceri biovar biserrulae, a novel biovar nodulating the pasture legume Biserrula pelecinus L. Int J Syst Evol Microbiol 2007; 57:1041–1045 [View Article] [PubMed]
    [Google Scholar]
  70. Klepa MS, Helene LCF, O Hara G, Hungria M. Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. Int J Syst Evol Microbiol 2022; 72:005446 [View Article] [PubMed]
    [Google Scholar]
  71. Rivas R, Laranjo M, Mateos PF, Oliveira S, Martínez-Molina E et al. Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol 2007; 44:412–418 [View Article] [PubMed]
    [Google Scholar]
  72. Hsouna J, Gritli T, Ilahi H, Ellouze W, Mansouri M et al. Genotypic and symbiotic diversity studies of rhizobia nodulating Acacia saligna in Tunisia reveal two novel symbiovars within the Rhizobium leguminosarum complex and Bradyrhizobium. Syst Appl Microbiol 2022; 45:126343 [View Article] [PubMed]
    [Google Scholar]
  73. Amarger N, Macheret V, Laguerre G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 1997; 47:996–1006 [View Article] [PubMed]
    [Google Scholar]
  74. Mnasri B, Liu TY, Saidi S, Chen WF, Chen WX et al. Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 2014; 64:1501–1506 [View Article] [PubMed]
    [Google Scholar]
  75. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A et al. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 2005; 55:569–575 [View Article] [PubMed]
    [Google Scholar]
  76. Ramírez-Bahena MH, Flores-Félix JD, Velázquez E, Peix Á. The Mimosoid tree Leucaena leucocephala can be nodulated by the symbiovar genistearum of Bradyrhizobium canariense. Syst Appl Microbiol 2020; 43:126041 [View Article] [PubMed]
    [Google Scholar]
  77. Rejili M, Off K, Brachmann A, Marín M. Bradyrhizobium hipponense sp. nov., isolated from Lupinus angustifolius growing in the northern region of Tunisia. Int J Syst Evol Microbiol 2020; 70:5539–5550 [View Article] [PubMed]
    [Google Scholar]
  78. Bouhnik O, Lamin H, Alami S, Bennis M, Ouajdi M et al. The endemic Chamaecytisus albidus is nodulated by symbiovar genistearum of Bradyrhizobium in the Moroccan Maamora Forest. Syst Appl Microbiol 2021; 44:126197 [View Article] [PubMed]
    [Google Scholar]
  79. Vinuesa P, Silva C, Werner D, Martínez-Romero E. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 2005; 34:29–54 [View Article] [PubMed]
    [Google Scholar]
  80. Appunu C, N’Zoue A, Laguerre G. Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural-ecological-climatic regions of India. Appl Environ Microbiol 2008; 74:5991–5996 [View Article] [PubMed]
    [Google Scholar]
  81. Li YH, Wang R, Sui XH, Wang ET, Zhang XX et al. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol 2019; 42:126002 [View Article] [PubMed]
    [Google Scholar]
  82. Gnat S, Małek W, Oleńska E, Wdowiak-Wróbel S, Kalita M et al. Phylogeny of symbiotic genes and the symbiotic properties of rhizobia specific to Astragalus glycyphyllos L. PLoS One 2015; 10:e0141504 [View Article] [PubMed]
    [Google Scholar]
  83. León-Barrios M, Lorite MJ, Donate-Correa J, Sanjuán J. Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range. Syst Appl Microbiol 2009; 32:413–420 [View Article] [PubMed]
    [Google Scholar]
  84. León-Barrios M, Pérez-Yépez J, Dorta P, Garrido A, Jiménez C. Alkalinity of Lanzarote soils is a factor shaping rhizobial populations with Sinorhizobium meliloti being the predominant microsymbiont of Lotus lancerottensis. Syst Appl Microbiol 2017; 40:171–178 [View Article] [PubMed]
    [Google Scholar]
  85. Belechheb T, Bouhnik O, Bakkali M, Hassani Zerrouk M, Laglaoui A et al. Ensifer. meliloti sv. lancerottense nodulates Lotus creticus in alkaline soils of Northern Morocco. Rhizosphere 2021; 18:100339 [View Article]
    [Google Scholar]
  86. Turner SL, Zhang X-X, Li F-D, Young JPW. What does a bacterial genome sequence represent? Mis-assignment of MAFF 303099 to the genospecies Mesorhizobium loti. Microbiology 2002; 148:3330–3331 [View Article] [PubMed]
    [Google Scholar]
  87. Ramírez-Bahena MH, Hernández M, Peix A, Velázquez E, León-Barrios M. Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst Appl Microbiol 2012; 35:334–341 [View Article] [PubMed]
    [Google Scholar]
  88. Martínez-Hidalgo P, Ramírez-Bahena MH, Flores-Félix JD, Igual JM, Sanjuán J et al. Reclassification of strains MAFF 303099T and R7A into Mesorhizobium japonicum sp. nov. Int J Syst Evol Microbiol 2016; 66:4936–4941 [View Article] [PubMed]
    [Google Scholar]
  89. Lorite MJ, Flores-Félix JD, Peix Á, Sanjuán J, Velázquez E. Mesorhizobium olivaresii sp. nov. isolated from Lotus corniculatus nodules. Syst Appl Microbiol 2016; 39:557–561 [View Article] [PubMed]
    [Google Scholar]
  90. Marcos-García M, Menéndez E, Ramírez-Bahena MH, Mateos PF, Peix Á et al. Mesorhizobium helmanticense sp. nov., isolated from Lotus corniculatus nodules. Int J Syst Evol Microbiol 2017; 67:2301–2305 [View Article] [PubMed]
    [Google Scholar]
  91. Mhamdi R, Ardley J, Tian R, Seshadri R, Reddy TBK et al. High-quality permanent draft genome sequence of Ensifer meliloti strain 4H41, an effective salt- and drought-tolerant microsymbiont of Phaseolus vulgaris. Stand Genomic Sci 2015; 10:34 [View Article] [PubMed]
    [Google Scholar]
  92. Ramírez-Bahena M-H, Vargas M, Martín M, Tejedor C, Velázquez E et al. Alfalfa microsymbionts from different ITS and nodC lineages of Ensifer meliloti and Ensifer medicae symbiovar meliloti establish efficient symbiosis with alfalfa in Spanish acid soils. Appl Microbiol Biotechnol 2015; 99:4855–4865 [View Article] [PubMed]
    [Google Scholar]
  93. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38:84–90 [View Article] [PubMed]
    [Google Scholar]
  94. Román-Ponce B, Jing Zhang Y, Soledad Vásquez-Murrieta M, Hua Sui X, Feng Chen W et al. Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 2016; 66:398–406 [View Article] [PubMed]
    [Google Scholar]
  95. Huo Y, Tong W, Wang J, Wang F, Bai W et al. Rhizobium chutanense sp. nov., isolated from root nodules of Phaseolus vulgaris in China. Int J Syst Evol Microbiol 2019; 69:2049–2056 [View Article] [PubMed]
    [Google Scholar]
  96. Ribeiro RA, Martins TB, Ormeño-Orrillo E, Marçon Delamuta JR, Rogel MA et al. Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 2015; 65:3162–3169 [View Article] [PubMed]
    [Google Scholar]
  97. Segovia L, Young JP, Martínez-Romero E. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 1993; 43:374–377 [View Article] [PubMed]
    [Google Scholar]
  98. Cordeiro AB, Ribeiro RA, Helene LCF, Hungria M. Rhizobium esperanzae sp. nov., a N2-fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 2017; 67:3937–3945 [View Article] [PubMed]
    [Google Scholar]
  99. Yan J, Yan H, Liu LX, Chen WF, Zhang XX et al. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 2017; 199:97–104 [View Article] [PubMed]
    [Google Scholar]
  100. Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 2006; 56:2631–2637 [View Article] [PubMed]
    [Google Scholar]
  101. Dangeard PA. Recherches Sur LES Tubercles Radicaux Des Légumineuses Paris: Botaniste; 1926 pp 1–275
    [Google Scholar]
  102. Ramirez-Bahena MH, Garcia-Fraile P, Peix A, Valverde A, Rivas R et al. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 2008; 58:2484–2490 [View Article]
    [Google Scholar]
  103. Wang F, Wang ET, Wu LJ, Sui XH, Li Y et al. Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 2011; 61:2582–2588 [View Article] [PubMed]
    [Google Scholar]
  104. Zhang YJ, Zheng WT, Everall I, Young JPW, Zhang XX et al. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol 2015; 65:2960–2967 [View Article] [PubMed]
    [Google Scholar]
  105. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH et al. Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int J Syst Evol Microbiol 2015; 65:497–503 [View Article] [PubMed]
    [Google Scholar]
  106. Aguirre-Noyola JL, Rosenblueth M, Santiago-Martínez MG, Martínez-Romero E. Transcriptomic responses of Rhizobium phaseoli to root exudates reflect its capacity to colonize maize and common bean in an intercropping system. Front Microbiol 2021; 12:740818 [View Article] [PubMed]
    [Google Scholar]
  107. Rejili M, Ruiz-Argueso T, Mars M. Novel putative Mesorhizobium and Ensifer genomospecies together with a novel symbiovar psoraleae nodulate legumes of agronomic interest grown in Tunisia. Syst Appl Microbiol 2020; 43:126067 [View Article] [PubMed]
    [Google Scholar]
  108. Guerrouj K, Ruíz-Díez B, Chahboune R, Ramírez-Bahena M-H, Abdelmoumen H et al. Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 2013; 36:218–223 [View Article]
    [Google Scholar]
  109. Gubry-Rangin C, Béna G, Cleyet-Marel J-C, Brunel B. Definition and evolution of a new symbiovar, sv. rigiduloides, among Ensifer meliloti efficiently nodulating Medicago species. Syst Appl Microbiol 2013; 36:490–496 [View Article] [PubMed]
    [Google Scholar]
  110. Nelson M, Guhlin J, Epstein B, Tiffin P, Sadowsky MJ. The complete replicons of 16 Ensifer meliloti strains offer insights into intra- and inter-replicon gene transfer, transposon-associated loci, and repeat elements. Microb Genom 2018; 4:e000174 [View Article] [PubMed]
    [Google Scholar]
  111. Hsouna J, Ilahi H, Han J-C, Gritli T, Ellouze W et al. Rhizobium acaciae sp. nov., a new nitrogen-fixing symbiovar isolated from root nodules of Acacia saligna in Tunisia. Int J Syst Evol Microbiol 2023; 73:005900 [View Article] [PubMed]
    [Google Scholar]
  112. Bromfield ESP, Cloutier S. Bradyrhizobium septentrionale sp. nov. (sv. septentrionale) and Bradyrhizobium quebecense sp. nov. (sv. septentrionale) associated with legumes native to Canada possess rearranged symbiosis genes and numerous insertion sequences. Int J Syst Evol Microbiol 2021; 71:004831 [View Article] [PubMed]
    [Google Scholar]
  113. Zhang Z, Liu W, Shao S, Wang E-T, Li Y. Diverse genomic backgrounds vs. highly conserved symbiotic genes in Sesbania-nodulating bacteria: shaping of the rhizobial community by host and soil properties. Microb Ecol 2020; 80:158–168 [View Article] [PubMed]
    [Google Scholar]
  114. Cobo-Díaz JF, Martínez-Hidalgo P, Fernández-González AJ, Martínez-Molina E, Toro N et al. The endemic Genista versicolor from Sierra Nevada National Park in Spain is nodulated by putative new Bradyrhizobium species and a novel symbiovar (sierranevadense). Syst Appl Microbiol 2014; 37:177–185 [View Article] [PubMed]
    [Google Scholar]
  115. Shamseldin A, Carro L, Peix A, Velázquez E, Moawad H et al. The symbiovar trifolii of Rhizobium bangladeshense and Rhizobium aegyptiacum sp. nov. nodulate Trifolium alexandrinum in Egypt. Syst Appl Microbiol 2016; 39:275–279 [View Article] [PubMed]
    [Google Scholar]
  116. Youseif SH, Abd El-Megeed FH, Mohamed AH, Ageez A, Veliz E et al. Diverse Rhizobium strains isolated from root nodules of Trifolium alexandrinum in Egypt and symbiovars. Syst Appl Microbiol 2021; 44:126156 [View Article] [PubMed]
    [Google Scholar]
  117. Martínez-Hidalgo P, Flores-Félix J-D, Menéndez E, Rivas R, Carro L et al. Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Syst Appl Microbiol 2015; 38:346–350 [View Article] [PubMed]
    [Google Scholar]
  118. Dall’Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JRM et al. Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 2013; 63:4167–4173 [View Article] [PubMed]
    [Google Scholar]
  119. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG et al. Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 2012; 62:1179–1184 [View Article] [PubMed]
    [Google Scholar]
  120. Martinez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P et al. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 1991; 41:417–426 [View Article]
    [Google Scholar]
  121. Ramírez-Puebla ST, Hernández MAR, Guerrero Ruiz G, Ormeño-Orrillo E, Martinez-Romero JC et al. Nodule bacteria from the cultured legume Phaseolus dumosus (belonging to the Phaseolus vulgaris cross-inoculation group) with common tropici phenotypic characteristics and symbiovar but distinctive phylogenomic position and chromid. Syst Appl Microbiol 2019; 42:373–382 [View Article] [PubMed]
    [Google Scholar]
  122. Boivin S, Mahé F, Debellé F, Pervent M, Tancelin M et al. Genetic variation in host-specific competitiveness of the symbiont Rhizobium leguminosarum symbiovar viciae. Front Plant Sci 2021; 12:719987 [View Article] [PubMed]
    [Google Scholar]
  123. Flores-Félix JD, Sánchez-Juanes F, García-Fraile P, Valverde A, Mateos PF et al. Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Syst Appl Microbiol 2019; 42:240–247 [View Article] [PubMed]
    [Google Scholar]
  124. Missbah El Idrissi M, Lamin H, Bouhnik O, Lamrabet M, Alami S et al. Characterization of Pisum sativum and Vicia faba microsymbionts in Morocco and definition of symbiovar viciae in Rhizobium acidisoli. Syst Appl Microbiol 2020; 43:126084 [View Article]
    [Google Scholar]
  125. Bejarano A, Ramírez-Bahena M-H, Velázquez E, Peix A. Vigna unguiculata is nodulated in Spain by endosymbionts of Genisteae legumes and by a new symbiovar (vignae) of the genus Bradyrhizobium. Syst Appl Microbiol 2014; 37:533–540 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006373
Loading
/content/journal/ijsem/10.1099/ijsem.0.006373
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error