Skip to content
1887

Abstract

Four lactic acid bacteria, designated F690, F697, F790 and F769-2, were isolated from the gut of honeybee (). Results of 16S rRNA gene sequence analysis indicated that strains F690 and F697 were phylogenetically related to the type strains of , , and , having 99.1–99.6 % 16S rRNA gene sequence similarities; and that strains F790 and F769-2 were most closely related to the type strain of , having 99.2–99.3 % 16S rRNA gene sequence similarities. The phylogenies based on concatenated , , , , , and sequences and based on whole genome sequences were identical to that based on 16S rRNA gene sequences. Strains F690 and F697 exhibited the highest average nucleotide identity (ANI; 92.1–93.2 %), digital DNA–DNA hybridization (dDDH; 50–50.1 %) and average amino acid identity (AAI; 94.9–95.1 %) values with Hma2N. Strains F790 and F769-2 had the highest ANI (93.1–94 %), dDDH (54.4 %) and AAI (94.4–94.7 %) values with Hma8N. Based upon the data obtained in the present study, two novel species, sp. nov. and sp. nov., are proposed and the type strains are F690 (=JCM 36259=CCTCC AB 2023131) and F790 (=JCM 36260=CCTCC AB 2023132), respectively.

Funding
This study was supported by the:
  • “Characteristic Probiotics and New Fermented Food” Team in Northeast Agricultural University (Award 50940912, Harbin, China)
    • Principle Award Recipient: ChunTao Gu
  • National Natural Science Foundation of China (Award no. 31471594)
    • Principle Award Recipient: ChunTao Gu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006285
2024-02-29
2025-01-15
Loading full text...

Full text loading...

References

  1. Li TT, Gu CT. Lactobacillus huangpiensis sp. nov. and Lactobacillus laiwuensis sp. nov., isolated from the gut of honeybee (Apis mellifera). Int J Syst Evol Microbiol 2022; 72:005237
    [Google Scholar]
  2. Olofsson TC, Alsterfjord M, Nilson B, Butler È, Vásquez A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 2014; 64:3109–3119 [View Article] [PubMed]
    [Google Scholar]
  3. Killer J, Dubná S, Sedláček I, Švec P. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 2014; 64:152–157 [View Article] [PubMed]
    [Google Scholar]
  4. Wang C, Huang Y, Li L, Guo J, Wu Z et al. Lactobacillus panisapium sp. nov., from honeybee Apis cerana bee bread. Int J Syst Evol Microbiol 2018; 68:703–708 [View Article] [PubMed]
    [Google Scholar]
  5. Praet J, Meeus I, Cnockaert M, Houf K, Smagghe G et al. Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie van Leeuwenhoek 2015; 107:1337–1349 [View Article] [PubMed]
    [Google Scholar]
  6. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  7. Ellegaard KM, Engel P. Genomic diversity landscape of the honey bee gut microbiota. Nat Commun 2019; 10:446 [View Article] [PubMed]
    [Google Scholar]
  8. Li TT, Liu DD, Fu ML. Proposal of Lactobacillus kosoi Chiou et al. 2018 as a later Heterotypic synonym of Lactobacillus micheneri McFrederick et al. 2018, elevation of Lactobacillus plantarum subsp. Argentoratensis to the species level as Lactobacillus argentoratensis sp. nov., and Lactobacillus zhaodongensis sp. nov., isolated from traditional Chinese pickle and the intestinal tract of a honey bee (Apis mellifera). Int J Syst Evol Microbiol 2020; 70:3123–3133
    [Google Scholar]
  9. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006; 56:2043–2048 [View Article] [PubMed]
    [Google Scholar]
  10. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article] [PubMed]
    [Google Scholar]
  11. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  12. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [View Article] [PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  14. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article] [PubMed]
    [Google Scholar]
  15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  16. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  17. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  18. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  22. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  23. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  26. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  27. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  29. Gao JL, Sun JG, Li Y, Wang ET, Chen WX. Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 1994; 44:151–158 [View Article]
    [Google Scholar]
  30. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006285
Loading
/content/journal/ijsem/10.1099/ijsem.0.006285
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error