Skip to content
1887

Abstract

Two novel ascomycetous yeast species of the genus are proposed based on isolates obtained in Thailand from food waste and the fruiting body of a polypore fungus, and on a combination of conventional DNA-barcode sequence analyses and whole-genome phylogenies. We focus on a particular subclade of the genus that contains species found in anthropic environments and describe sp. nov. (DMKU-FW31-5=PYCC 9022=TBRC 15055), found on food waste samples. In an adjacent clade, we describe sp. nov. (DMKU-KO16=PYCC 8908=TBRC 14869), which represents the closest relative of and was isolated from the fruiting body of sp. In the subclade of sp. nov., we propose that should be regarded as a synonym of and that should be regarded as a synonym of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006282
2024-02-29
2025-04-20
Loading full text...

Full text loading...

References

  1. Gonçalves P, Gonçalves C, Brito PH, Sampaio JP. The Wickerhamiella/Starmerella clade-a treasure trove for the study of the evolution of yeast metabolism. Yeast 2020; 37:313–320 [View Article] [PubMed]
    [Google Scholar]
  2. Kurtzman CP, Fell JW, Boekhout T. The Yeasts: A Taxonomic Study, 5th edn Amsterdam: Elsevier; 2011
    [Google Scholar]
  3. Li Y, Steenwyk JL, Chang Y, Wang Y, James TY et al. A genome-scale phylogeny of the kingdom fungi. Curr Biol 2021; 31:1653–1665 [View Article] [PubMed]
    [Google Scholar]
  4. Groenewald M, Hittinger CT, Bensch K, Opulente DA, Shen X-X et al. A genome-informed higher rank classification of the biotechnologically important fungal subphylum Saccharomycotina. Stud Mycol 2023; 105:1–22 [View Article]
    [Google Scholar]
  5. Libkind D, Čadež N, Opulente DA, Langdon QK, Rosa CA et al. Towards yeast taxogenomics: lessons from novel species descriptions based on complete genome sequences. FEMS Yeast Res 2020; 20:foaa042 [View Article] [PubMed]
    [Google Scholar]
  6. Punyauppa-Path S, Kiatprasert P, Punyauppa-Path P, Rattanachaikunsopon P, Khunnamwong P et al. Distribution of Kazachstania Yeast in Thai traditional fermented fish (Plaa-Som) in Northeastern Thailand. J Fungi 2022; 8:1029 [View Article] [PubMed]
    [Google Scholar]
  7. Into P, Pontes A, Sampaio JP, Limtong S. Yeast diversity associated with the phylloplane of corn plants cultivated in Thailand. Microorganisms 2020; 8:80 [View Article]
    [Google Scholar]
  8. Srisuk N, Nutaratat P, Surussawadee J, Limtong S. Yeast communities in sugarcane phylloplane. Microbiology 2019; 88:353–369 [View Article]
    [Google Scholar]
  9. Sakpuntoon V, Angchuan J, Boontham W, Khunnamwong P, Boonmak C et al. Grease waste as a reservoir of lipase-producing yeast and description of Limtongella siamensis gen. nov., sp. nov. Microorganisms 2019; 8:27 [View Article] [PubMed]
    [Google Scholar]
  10. Sakpuntoon V, Limtong S, Srisuk N. Lipase production by Limtongozyma siamensis, a novel lipase producer and lipid accumulating yeast. J Microbiol Biotechnol 2023; 33:1531–1541 [View Article] [PubMed]
    [Google Scholar]
  11. Boontham W, Angchuan J, Boonmak C, Srisuk N. Limtongozyma siamensis gen. nov., sp. nov., a yeast species in the Saccharomycetales and reassignment of Candida cylindracea to the genus Limtongozyma. Int J Syst Evol Microbiol 2020; 70:199–203 [View Article]
    [Google Scholar]
  12. Sakpuntoon V, Angchaun J, Boonmak C, Chang C-F, Liu S-M et al. Wickerhamiella osmotolerans sp. nov. and Wickerhamiella tropicalis sp. nov., novel ascomycetous yeast in the family Wickerhamiellaceae. Int J Syst Evol Microbiol 2020; 70:2596–2601 [View Article] [PubMed]
    [Google Scholar]
  13. Sakpuntoon V, Angchuan J, Boonmak C, Khunnamwong P, Jacques N et al. Savitreea pentosicarens gen. nov., sp. nov., a yeast species in the family Saccharomycetaceae isolated from a grease trap. Int J Syst Evol Microbiol 2020; 70:5665–5670 [View Article] [PubMed]
    [Google Scholar]
  14. Sakpuntoon V, Péter G, Groenewald M, Dlauchy D, Limtong S et al. Description of Crinitomyces reliqui gen. nov., sp. nov. and reassignment of Trichosporiella flavificans and Candida ghanaensis to the genus Crinitomyces. J Fungi 2022; 8:224 [View Article]
    [Google Scholar]
  15. Dudhat J, Sakpuntoon V, Angchuan J, Kaewwichian R, Srisuk N. Magnusiomyces siamensis sp. nov., a yeast-like fungus isolated from food waste. Int J Syst Evol Microbiol 2022; 72:005435 [View Article] [PubMed]
    [Google Scholar]
  16. de Vega C, Albaladejo RG, Guzmán B, Steenhuisen S-L, Johnson SD et al. Flowers as a reservoir of yeast diversity: description of Wickerhamiella nectarea f.a. sp. nov., and Wickerhamiella natalensis f.a. sp. nov. from South African flowers and pollinators, and transfer of related Candida species to the genus Wickerhamiella as new combinations. FEMS Yeast Res 2017; 17: [View Article] [PubMed]
    [Google Scholar]
  17. Rosa CA, Morais PB, Lachance M-A, Santos RO, Melo WGP et al. Wickerhamomyces queroliae sp. nov. and Candida jalapaonensis sp. nov., two yeast species isolated from Cerrado ecosystem in North Brazil. Int J Syst Evol Microbiol 2009; 59:1232–1236 [View Article] [PubMed]
    [Google Scholar]
  18. Dayo-Owoyemi I, Rosa CA, Rodrigues A, Pagnocca FC. Wickerhamiella kiyanii f.a., sp. nov. and Wickerhamiella fructicola f.a., sp. nov., two yeasts isolated from native plants of Atlantic rainforest in Brazil. Int J Syst Evol Microbiol 2014; 64:2152–2158 [View Article] [PubMed]
    [Google Scholar]
  19. Lachance MA, Rosa CA, Starmer WT, Schlag-Edler B, Barker JS et al. Wickerhamiella australiensis, Wickerhamiella cacticola, Wickerhamiella occidentalis, Candida drosophilae and Candida lipophila, five new related yeast species from flowers and associated insects. Int J Syst Bacteriol 1998; 48 Pt 4:1431–1443 [View Article] [PubMed]
    [Google Scholar]
  20. Santos ARO, Leon MP, Barros KO, Freitas LFD, Hughes AFS et al. Starmerella camargoi f.a., sp. nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations. Int J Syst Evol Microbiol 2018; 68:1333–1343 [View Article] [PubMed]
    [Google Scholar]
  21. Lachance M-A, Vale HMM, Sperandio EM, Carvalho AOS, Santos ARO et al. Wickerhamiella dianesei f.a., sp. nov. and Wickerhamiella kurtzmanii f.a., sp. nov., two yeast species isolated from plants and insects. Int J Syst Evol Microbiol 2018; 68:3351–3355 [View Article] [PubMed]
    [Google Scholar]
  22. Khunnamwong P, Kingphadung K, Lomthong T, Kanpiengjai A, Khanongnuch C et al. Wickerhamiella nakhonpathomensis f.a. sp. nov., a novel ascomycetous yeast species isolated from a mushroom and a flower in Thailand. Int J Syst Evol Microbiol 2022; 72:005191 [View Article] [PubMed]
    [Google Scholar]
  23. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurtzman CP, Fell JW, Boekhout T. eds The Yeasts, A Taxonomic Study Amsterdam: Elsevier; 2011 pp 87–110
    [Google Scholar]
  24. Gonçalves C, Coelho MA, Salema-Oom M, Gonçalves P. Stepwise functional evolution in a fungal sugar transporter family. Mol Biol Evol 2016; 33:352–366 [View Article] [PubMed]
    [Google Scholar]
  25. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998; 73:331–371 [View Article] [PubMed]
    [Google Scholar]
  26. Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res 2003; 3:417–432 [View Article] [PubMed]
    [Google Scholar]
  27. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  28. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  30. Gonçalves C, Marques M, Gonçalves P. Contrasting strategies for sucrose utilization in a floral yeast clade. mSphere 2022; 7:e0003522 [View Article] [PubMed]
    [Google Scholar]
  31. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article] [PubMed]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  33. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  34. Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 2006; 7:62 [View Article] [PubMed]
    [Google Scholar]
  35. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  36. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  37. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  38. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [View Article] [PubMed]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  40. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  41. Lachance MA, Lee DK, Hsiang T. Delineating yeast species with genome average nucleotide identity: a calibration of ANI with haplontic, heterothallic Metschnikowia species. Antonie van Leeuwenhoek 2020; 113:2097–2106 [View Article]
    [Google Scholar]
  42. Kurtzman CP. New anamorphic yeast species: Candida infanticola sp. nov., Candida polysorbophila sp. nov., Candida transvaalensis sp. nov. and Trigonopsis californica sp. nov. Antonie van Leeuwenhoek 2007; 92:221–231 [View Article] [PubMed]
    [Google Scholar]
  43. Belloch C, Pelaez AI, Sánchez J, Kurtzman CP. Wickerhamiella verensis f.a. sp. nov., a novel yeast species isolated from subsoil groundwater contaminated with hydrocarbons and from a human infection. Int J Syst Evol Microbiol 2020; 70:2420–2425 [View Article] [PubMed]
    [Google Scholar]
  44. Paraíso F, Pontes A, Neves J, Lebani K, Hutzler M et al. Do microbes evade domestication? - Evaluating potential ferality among diastatic Saccharomyces cerevisiae. Food Microbiol 2023; 115:104320 [View Article] [PubMed]
    [Google Scholar]
  45. Hagler AN, Ribeiro JRA, Pinotti T, Brandão LR, Pimenta RS et al. Wickerhamiella slavikovae sp. nov. and Wickerhamiella goesii sp. nov., two yeast species isolated from natural substrates. Int J Syst Evol Microbiol 2013; 63:3099–3103 [View Article] [PubMed]
    [Google Scholar]
  46. Golubev WI, Bab’eva IP. Torulopsis apis var. galacta var. nov. Int J Syst Bacteriol 1977; 27:165–167 [View Article]
    [Google Scholar]
  47. Nakase T, Jindamorakot S, Limtong S, Am-in S, Kawasaki H et al. Candida kazuoi sp. nov. and Candida hasegawae sp. nov., two new species of ascomycetous anamorphic yeasts isolated from insect frass in Thailand. J Gen Appl Microbiol 2007; 53:239–245 [View Article] [PubMed]
    [Google Scholar]
  48. Gonçalves C, Wisecaver JH, Kominek J, Oom MS, Leandro MJ et al. Evidence for loss and reacquisition of alcoholic fermentation in a fructophilic yeast lineage. eLife 2018; 7:e33034 [View Article] [PubMed]
    [Google Scholar]
  49. Pontes A, Paraíso F, Silva M, Lagoas C, Aires A et al. n.d. Extensive remodelling of sugar metabolism through gene loss and horizontal gene transfer in a Eukaryotic lineage. BMC Biol;under revi
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006282
Loading
/content/journal/ijsem/10.1099/ijsem.0.006282
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error