Skip to content
1887

Abstract

Three Gram-stain-negative, aerobic and rod-shaped bacterial strains, designated RD2P54, M1R5S18 and M1R5S59, were isolated from a root and rhizosphere soil of , in Baotou, PR China. The three strains showed 94.1–98.7 % 16S rRNA gene sequence similarities to strains, indicating they belonged to the genus . The phylogenomic tree based on core genomes showed that strain RD2P54 tightly clustered with SJ-92, while strains M1R5S18 and M1R5S59 clustered with each other and with XBU10 and SJ-9. Though strains M1R5S18 and M1R5S59 showed high 16S rRNA similarity (99.4 %) to each other, the low average nucleotide identity based on (ANIb; 88.6 %) and digital DNA–DNA hybridization (dDDH; 31.6 %) values between them indicated that they belonged to two different species. The ANIb and dDDH values of strains RD2P54, M1R5S18 and M1R5S59 with their closely neighbours are well below the delineation threshold values for identifying strains as representing different species. All three strains take iso-C and summed feature 9 (C 10-methyl and/or iso-C 9) as major fatty acids, and ubiquinone-8 as the sole respiratory quinone. The major polar lipids of all three strains are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on phenotypic and phylogenetic data, these three strains should be considered to represent three novel species of the genus , for which the names sp. nov. (type strain RD2P54=CGMCC 1.61535 =KCTC 92470), sp. nov. (type strain M1R5S18=CGMCC 1.61537 =KCTC 92469) and sp. nov. (type strain M1R5S59=CGMCC 1.61536 =KCTC 92471) are proposed.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31960020)
    • Principle Award Recipient: Ji-QuanSun
  • National Natural Science Foundation of China (Award 32260022)
    • Principle Award Recipient: Ji-QuanSun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006257
2024-01-29
2025-01-19
Loading full text...

Full text loading...

References

  1. Wei H-M, Xu L, Zhang X, Sun J-Q. Three novel Luteimonas species from a root and Rhizosphere soil of Kalidium cuspidatum: Luteimonas endophytica sp nov., Luteimonas rhizosphaericola sp. nov. and Luteimonas kalidii sp. nov. Figshare 2023
    [Google Scholar]
  2. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:273–282 [View Article] [PubMed]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Xiong L, An L, Zong Y, Wang M, Wang G et al. Luteimonas gilva sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2020; 70:3462–3467 [View Article] [PubMed]
    [Google Scholar]
  5. Baik KS, Park SC, Kim MS, Kim EM, Park C et al. Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:2904–2908 [View Article] [PubMed]
    [Google Scholar]
  6. Huang X-X, Shang J, Xu L, Yang R, Sun J-Q. Luteimonas deserti sp. nov., a novel strain isolated from desert soil. Int J Syst Evol Microbiol 2021; 71:005048 [View Article] [PubMed]
    [Google Scholar]
  7. Sun J-Q, Huang X-X, Xu L, Wei H-M. Luteimonas saliphila sp. nov. and Luteimonas salinisoli sp. nov., two novel strains isolated from saline soils. Int J Syst Evol Microbiol 2022; 72:005334 [View Article] [PubMed]
    [Google Scholar]
  8. Lin P, Yan Z-F, Li C-T. Luteimonas cellulosilyticus sp. nov., cellulose-degrading bacterium isolated from soil in Changguangxi National Wetland Park, China. Curr Microbiol 2020; 77:1341–1347 [View Article] [PubMed]
    [Google Scholar]
  9. Rani P, Mukherjee U, Verma H, Kamra K, Lal R. Luteimonas tolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2016; 66:1851–1856 [View Article] [PubMed]
    [Google Scholar]
  10. Wang X, Yang H-X, Zhang Y-K, Zhu S-J, Liu X-W et al. Luteimonas soli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2015; 65:4809–4815 [View Article]
    [Google Scholar]
  11. Zhao G-Y, Shao F, Zhang M, Zhang X-J, Wang J-Y et al. Luteimonas rhizosphaerae sp. nov., isolated from the rhizosphere of Triticum aestivum L. Int J Syst Evol Microbiol 2018; 68:1197–1203 [View Article] [PubMed]
    [Google Scholar]
  12. Cheng J, Zhang M-Y, Wang W-X, Manikprabhu D, Salam N et al. Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere. Int J Syst Evol Microbiol 2016; 66:946–950 [View Article] [PubMed]
    [Google Scholar]
  13. Fan X, Yu T, Li Z, Zhang X-H. Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:668–674 [View Article] [PubMed]
    [Google Scholar]
  14. Roh SW, Kim K-H, Nam Y-D, Chang H-W, Kim M-S et al. Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 2008; 46:525–529 [View Article]
    [Google Scholar]
  15. Chou J-H, Cho N-T, Arun AB, Young C-C, Chen W-M. Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol 2008; 58:2051–2055 [View Article] [PubMed]
    [Google Scholar]
  16. Young C-C, Kämpfer P, Chen W-M, Yen W-S, Arun AB et al. Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 2007; 57:741–744 [View Article] [PubMed]
    [Google Scholar]
  17. Sun Z-B, Zhang H, Yuan X-F, Wang Y-X, Feng D-M et al. Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. Int J Syst Evol Microbiol 2012; 62:2916–2920 [View Article] [PubMed]
    [Google Scholar]
  18. Verma A, Ojha AK, Kumari P, Sundharam SS, Mayilraj S et al. Luteimonas padinae sp. nov., an epiphytic bacterium isolated from an intertidal macroalga. Int J Syst Evol Microbiol 2016; 66:5444–5451 [View Article] [PubMed]
    [Google Scholar]
  19. Ke C-Y, Sun W-J, Li Y-B, Lu G-M, Zhang Q-Z et al. Microbial enhanced oil recovery in Baolige Oilfield using an indigenous facultative anaerobic strain Luteimonas huabeiensis sp. nov. J Pet Sci Eng 2018; 167:160–167 [View Article]
    [Google Scholar]
  20. Zhang D-C, Liu H-C, Xin Y-H, Zhou Y-G, Schinner F et al. Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2010; 60:1581–1584 [View Article]
    [Google Scholar]
  21. Xin Y, Cao X, Wu P, Xue S. Luteimonas dalianensis sp. nov., an obligate marine bacterium isolated from seawater. J Microbiol 2014; 52:729–733 [View Article] [PubMed]
    [Google Scholar]
  22. Mu Y, Pan Y, Shi W, Liu L, Jiang Z et al. Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil. Int J Syst Evol Microbiol 2016; 66:2291–2296 [View Article] [PubMed]
    [Google Scholar]
  23. Huang X-X, Xu L, Shang J, Sun J-Q. Marinilactibacillus kalidii sp. nov., an indole acetic acid-producing endophyte isolated from a shoot of halophyte Kalidium cuspidatum. Curr Microbiol 2022; 79:198 [View Article] [PubMed]
    [Google Scholar]
  24. Tian J, Xu L, Zhang X, Sun J-Q. Acuticoccus kalidii sp. nov., a 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophyte from a root of Kalidium cuspidatum. Int J Syst Evol Microbiol 2022; 72:10 [View Article] [PubMed]
    [Google Scholar]
  25. Wang H-T, Xu L, Sun J-Q. Aquibacillus kalidii sp. nov., an indole acetic acid-producing endophyte from a shoot of Kalidium cuspidatum, and reclassification of Virgibacillus campisalis Lee et al. 2012 as a later heterotypic synonym of Virgibacillus alimentarius Kim et al. 2011. Int J Syst Evol Microbiol 2021; 71:10 [View Article]
    [Google Scholar]
  26. Feng J-Y, Xu L, Woo PCY, Sun J-Q. Ignatzschineria rhizosphaerae sp. nov. isolated from rhizosphere soil of the halophyte Kalidium cuspidatum. Curr Microbiol 2022; 79:315 [View Article] [PubMed]
    [Google Scholar]
  27. Li L-F, Xu L, Wei H-M, Sun J-Q. Idiomarina rhizosphaerae sp. nov. isolated from rhizosphere soil of Kalidium cuspidatum, and reclassification of Idiomarina andamanensis as Pseudidiomarina andamanensis comb. nov., and Idiomarina mangrovi as Pseudidiomarina mangrovi comb. nov. Arch Microbiol 2022; 204:712 [View Article] [PubMed]
    [Google Scholar]
  28. Sun J-Q, Xu L, Liu M, Wang X-Y, Wu X-L. Flavobacterium suaedae sp. nov., an endophyte isolated from the root of Suaeda corniculata. Int J Syst Evol Microbiol 2016; 66:1943–1949 [View Article] [PubMed]
    [Google Scholar]
  29. Sun J-Q, Xu L, Guo Y, Li W-L, Shao Z-Q et al. Kribbella deserti sp. nov., isolated from rhizosphere soil of Ammopiptanthus mongolicus. Int J Syst Evol Microbiol 2017; 67:692–696 [View Article] [PubMed]
    [Google Scholar]
  30. Ma J-P, Wang Z, Lu P, Wang H, Waseem Ali S et al. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol Lett 2009; 296:203–209 [View Article] [PubMed]
    [Google Scholar]
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  33. Haeseler AV. Maximum likelihood tree reconstruction. Zoology 2000; 102:101–110
    [Google Scholar]
  34. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  35. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  38. Nguyen NP, Warnow T, Pop M, White B. A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes 2016; 2:16004 [View Article] [PubMed]
    [Google Scholar]
  39. Xu L, Huang X-X, Fan D-L, Sun J-Q. Lysobacter alkalisoli sp. nov., a chitin-degrading strain isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2020; 70:1273–1281 [View Article] [PubMed]
    [Google Scholar]
  40. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  41. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  42. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  43. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  44. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–5 [View Article] [PubMed]
    [Google Scholar]
  45. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  46. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  47. Nowroozi J, Akhavan Sepahi A, Tahmasebinejad Kamarposhti L, Razavipour R, Mazhar F. Evaluation of ciprofloxacin (gyrA, parC genes) and tetracycline (tetB gene) resistance in nosocomial Acinetobacter baumannii infections. Jundishapur J Microbiol 2014; 7:e8976 [View Article] [PubMed]
    [Google Scholar]
  48. Yamada K, Ishii Y, Tateda K. Biochemical characterization of the subclass B3 metallo-β-lactamase PJM-1 from Pseudoxanthomonas japonensis. Antimicrob Agents Chemother 2022; 66:e0069122 [View Article] [PubMed]
    [Google Scholar]
  49. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  50. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  51. Kim B-C, Jeong W-J, Kim DY, Oh H-W, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu’er tea. Int J Syst Evol Microbiol 2009; 59:1002–1006 [View Article] [PubMed]
    [Google Scholar]
  52. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [View Article] [PubMed]
    [Google Scholar]
  53. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  54. Oren A. Characterization of pigments of prokaryotes and their use in taxonomy and classification. Method Microbiol 2011; 38:261–282 [View Article]
    [Google Scholar]
  55. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  56. Kates M. Techniques of Lipidology, 2nd edn Amsterdam: Elsevier; 1986
    [Google Scholar]
  57. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  58. Chen Y, Zhang Y, Xin D, Luo X, Pang H et al. Description and genome analysis of Luteimonas viscosa sp. nov., a novel bacterium isolated from soil of a sunflower field. Antonie van Leeuwenhoek 2022; 115:749–760 [View Article]
    [Google Scholar]
  59. Zhou J, Chen J, Ma J, Xu N, Xin F et al. Luteimonas wenzhouensis sp. nov., a chitinolytic bacterium isolated from a landfill soil. Curr Microbiol 2021; 78:383–388 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006257
Loading
/content/journal/ijsem/10.1099/ijsem.0.006257
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error