1887

Abstract

Three bacterial strains, namely LPB0304, LPB0319 and LPB0142, were isolated from coastal environments. The 16S rRNA gene sequences of the three isolates were found to show the highest sequence similarities to (98.44 %), (97.55 %) and (97.60 %), respectively. The low (<98.7 %) sequence similarities and tree topologies implied the novelty of the three isolates, representing novel genomic species of the genus , and . Numerous biochemical and physiological features also supported the distinctiveness of the isolates from previously known species. Based on the phenotypic and phylogenetic data presented in this study, three novel species are suggested with the following names: sp. nov. (LPB0304=KACC 21523=ATCC TSD-216), sp. nov. (LPB0319=KACC 21522=ATCC TSD-218) and sp. nov. (LPB0142=KACC 18892=JCM 31567).

Funding
This study was supported by the:
  • National Institute of Biological Resources (Award K1916961)
    • Principle Award Recipient: HanaYi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006255
2024-01-30
2024-12-02
Loading full text...

Full text loading...

References

  1. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36:2847–2852 [View Article] [PubMed]
    [Google Scholar]
  2. Kämpfer P, Lodders N, Martin K, Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 2011; 61:1528–1533 [View Article] [PubMed]
    [Google Scholar]
  3. Singh H, Du J, Won K, Yang J-E, Yin C et al. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia. Int J Syst Evol Microbiol 2015; 65:3690–3696 [View Article] [PubMed]
    [Google Scholar]
  4. Board TE. Massilia. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  5. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2013; 42:D613–D616 [View Article] [PubMed]
    [Google Scholar]
  6. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992; 42:568–576 [View Article] [PubMed]
    [Google Scholar]
  7. Bowman JP, McMeekin TA. Marinobacter. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  8. Imhoff JF, Truper HG, Pfennig N. Rearrangement of the species and genera of the phototrophic purple nonsulfur bacteria. Int J Syst Bacteriol 1984; 34:340–343 [View Article]
    [Google Scholar]
  9. Imhoff JF. Rhodobacter. In Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Ltd; 2015
    [Google Scholar]
  10. Baek MG, Shin SK, Yi H. Gemmobacter aquarius sp. nov., Runella rosea sp. nov. and Flavobacterium fluviale sp. nov., isolated from the Namhangang River system. Int J Syst Evol Microbiol 2020; 70:5640–5647 [View Article] [PubMed]
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Jeon Y-S, Lee K, Park S-C, Kim B-S, Cho Y-J et al. EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 2014; 64:689–691 [View Article] [PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  14. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [View Article] [PubMed]
    [Google Scholar]
  15. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  16. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article] [PubMed]
    [Google Scholar]
  17. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  18. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:1825 [View Article] [PubMed]
    [Google Scholar]
  19. Srinivas TNR, Kumar PA, Sasikala C, Ramana C. Rhodovulum imhoffii sp. nov. Int J Syst Evol Microbiol 2007; 57:228–232 [View Article] [PubMed]
    [Google Scholar]
  20. Wang D, Liu H, Zheng S, Wang G. Paenirhodobacter enshiensis gen. nov., sp. nov., a non-photosynthetic bacterium isolated from soil, and emended descriptions of the genera Rhodobacter and Haematobacter. Int J Syst Evol Microbiol 2014; 64:551–558 [View Article] [PubMed]
    [Google Scholar]
  21. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Weon H-Y, Yoo S-H, Kim S-J, Kim Y-S, Anandham R et al. Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010; 60:1938–1943 [View Article] [PubMed]
    [Google Scholar]
  23. Weon H-Y, Kim B-Y, Hong S-B, Jeon Y-A, Koo B-S et al. Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2009; 59:1656–1660 [View Article] [PubMed]
    [Google Scholar]
  24. Zul D, Wanner G, Overmann J. Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. Int J Syst Evol Microbiol 2008; 58:1245–1251 [View Article] [PubMed]
    [Google Scholar]
  25. Huo Y-Y, Wang C-S, Yang J-Y, Wu M, Xu X-W. Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2008; 58:2885–2889 [View Article] [PubMed]
    [Google Scholar]
  26. Vaidya B, Kumar R, Korpole S, Tanuku NRS, Pinnaka AK. Marinobacter nitratireducens sp. nov., a halophilic and lipolytic bacterium isolated from coastal surface sea water. Int J Syst Evol Microbiol 2015; 65:2056–2063 [View Article] [PubMed]
    [Google Scholar]
  27. Lee OO, Lai PY, Wu H-X, Zhou X-J, Miao L et al. Marinobacter xestospongiae sp. nov., isolated from the marine sponge Xestospongia testudinaria collected from the Red Sea. Int J Syst Evol Microbiol 2012; 62:1980–1985 [View Article] [PubMed]
    [Google Scholar]
  28. Ahmad W, Zheng Y, Li Y, Sun W, Hu Y et al. Marinobacter salinexigens sp. nov., a marine bacterium isolated from hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:3794–3800 [View Article] [PubMed]
    [Google Scholar]
  29. Suresh G, Sailaja B, Ashif A, Dave BP, Sasikala C et al. Description of Rhodobacter azollae sp. nov. and Rhodobacter lacus sp. nov. Int J Syst Evol Microbiol 2017; 67:3289–3295 [View Article] [PubMed]
    [Google Scholar]
  30. Venkata Ramana V, Sasikala C, Ramana C. Rhodobacter maris sp. nov., a phototrophic alphaproteobacterium isolated from a marine habitat of India. Int J Syst Evol Microbiol 2008; 58:1719–1722 [View Article] [PubMed]
    [Google Scholar]
  31. Yang G, Chen M, Zhou S, Liu Z, Yuan Y. Sinorhodobacter ferrireducens gen. nov., sp. nov., a non-phototrophic iron-reducing bacterium closely related to phototrophic Rhodobacter species. Antonie van Leeuwenhoek 2013; 104:715–724 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006255
Loading
/content/journal/ijsem/10.1099/ijsem.0.006255
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error