1887

Abstract

A Gram-stain-negative, catalase-positive and oxidase-positive, nonmotile, aerobic, light yellow, spherical-shaped bacterial strain with no flagella, designated strain YIM 152171, was isolated from sediment of the South China Sea. Colonies were smooth and convex, light yellow and circular, and 1.0–1.5×1.0–1.5 µm in cell diameter after 7 days of incubation at 28°C on YIM38 media supplemented with sea salt. Colonies could grow at 20–45°C (optimum 28–35°C) and pH 6.0–11.0 (optimum, pH 7.0–9.0), and they could proliferate in the salinity range of 0–6.0 % (w/v) NaCl. The major cellular fatty acids were summed feature 8 (C 7/C ω6), C ω7 11-methyl, C, C ω11, C ω5, C ω6 and C ω5. The respiratory quinone was ubiquinone 10, and the polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol mannoside, one unidentified phospholipid and one unidentified aminolipid. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain YIM 152171 within the order in a distinct lineage that also included the genus . The 16S rRNA gene sequence similarities of YIM 152171 to those of , and were 92.17, 89.25 and 88.91 %, respectively. The assembled draft genome of strain YIM 152171 had 136 contigs with an N50 value of 134704 nt, a total length of 3 001 346 bp and a G+C content of 70.27 mol%. The phylogenetic, phenotypic and chemotaxonomic data showed that strain YIM 152171 (=MCCC 1K08488=KCTC 92884) represents a type of novel species and genus for which we propose the name gen. nov., sp. nov.

Funding
This study was supported by the:
  • the Government Project of Yunnan Province (Award YNWR-QNBJ-2018-085)
    • Principle Award Recipient: YiJiang
  • Major research project of Guangxi for science and technology (Award AA18242026)
    • Principle Award Recipient: YiJiang
  • National Natural Science Foundation of China (Award No.32060001)
    • Principle Award Recipient: YiJiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006241
2024-01-19
2024-12-07
Loading full text...

Full text loading...

References

  1. Pfennig N, Truper HG. Higher taxa of the phototrophic bacteria. Int J Syst Bacteriol 1971; 21:17–18 [View Article]
    [Google Scholar]
  2. Proença DN, Whitman WB, Varghese N, Shapiro N, Woyke T et al. Arboriscoccus pini gen. nov., sp. nov., an endophyte from a pine tree of the class Alphaproteobacteria, emended description of Geminicoccus roseus, and proposal of Geminicoccaceae fam. nov. Syst Appl Microbiol 2018; 41:94–100 [View Article] [PubMed]
    [Google Scholar]
  3. Maszenan AM, Seviour RJ, Patel BKC, Janssen PH, Wanner J. Defluvicoccus vanus gen. nov., sp. nov., a novel Gram-negative coccus/coccobacillus in the “Alphaproteobacteria” from activated sludge. Int J Syst Evol Microbiol 2005; 55:2105–2111 [View Article] [PubMed]
    [Google Scholar]
  4. Foesel BU, Gössner AS, Drake HL, Schramm A. Geminicoccus roseus gen. nov., sp. nov., an aerobic phototrophic Alphaproteobacterium isolated from a marine aquaculture biofilter. Syst Appl Microbiol 2007; 30:581–586 [View Article] [PubMed]
    [Google Scholar]
  5. Jiang Z-M, Deng Y, Han X-F, Su J, Wang H et al. Geminicoccus flavidas sp. nov. and Geminicoccus harenae sp. nov., two IAA-producing novel rare bacterial species inhabiting desert biological soil crusts. Front Microbiol 2022; 13:1034816 [View Article] [PubMed]
    [Google Scholar]
  6. Shi BH, Arunpairojana V, Palakawong S, Yokota A. Tistrella mobilis gen nov, sp nov, a novel polyhydroxyalkanoate-producing bacterium belonging to alpha-Proteobacteria. J Gen Appl Microbiol 2002; 48:335–343 [View Article] [PubMed]
    [Google Scholar]
  7. Zhang D-C, Liu H-C, Zhou Y-G, Schinner F, Margesin R. Tistrella bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:2227–2230 [View Article] [PubMed]
    [Google Scholar]
  8. Li G-D, Chen X, Li Q-Y, Xu F-J, Qiu S-M et al. Tessaracoccus rhinocerotis sp. nov., isolated from the faeces of Rhinoceros unicornis. Int J Syst Evol Microbiol 2016; 66:922–927 [View Article]
    [Google Scholar]
  9. Orsini M, Romano-Spica V. A microwave-based method for nucleic acid isolation from environmental samples. Lett Appl Microbiol 2001; 33:17–20 [View Article] [PubMed]
    [Google Scholar]
  10. Jiang H, Dong H, Zhang G, Yu B, Chapman LR et al. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 2006; 72:3832–3845 [View Article] [PubMed]
    [Google Scholar]
  11. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001; 51:357–363 [View Article]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  14. Stackebrandt E, Ebers JJMT. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 4:6–9
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  18. Joseph F. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783 [View Article]
    [Google Scholar]
  19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25–29 [View Article] [PubMed]
    [Google Scholar]
  20. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277–80 [View Article] [PubMed]
    [Google Scholar]
  21. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  22. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009; 37:D233–8 [View Article] [PubMed]
    [Google Scholar]
  23. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45:D566–D573 [View Article]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  25. Oren A, Garrity GM. Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie van Leeuwenhoek 2014; 106:43–56 [View Article]
    [Google Scholar]
  26. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  27. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article] [PubMed]
    [Google Scholar]
  28. Kämpfer P, Glaeser SP, Busse H-J, McInroy JA, Clermont D et al. Pseudoneobacillus rhizosphaerae gen. nov., sp. nov., isolated from maize root rhizosphere. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  29. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [View Article] [PubMed]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  31. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–46 [View Article] [PubMed]
    [Google Scholar]
  32. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [View Article] [PubMed]
    [Google Scholar]
  33. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  34. Jiang L-Q, Zhang K, Li G-D, Wang X-Y, Shi S-B et al. Rubellimicrobium rubrum sp. nov., a novel bright reddish bacterium isolated from a lichen sample. Antonie van Leeuwenhoek 2019; 112:1739–1745 [View Article] [PubMed]
    [Google Scholar]
  35. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  36. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 1990; 273:164–172 [View Article] [PubMed]
    [Google Scholar]
  37. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  38. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42:872–874 [View Article] [PubMed]
    [Google Scholar]
  39. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64:
    [Google Scholar]
  40. Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M et al. Analysis of Tween 80 as an esterase/ lipase substrate for lipolytic activity assay. Biotechnology Techniques 1998; 12:183–186 [View Article]
    [Google Scholar]
  41. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article] [PubMed]
    [Google Scholar]
  42. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  43. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  44. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006241
Loading
/content/journal/ijsem/10.1099/ijsem.0.006241
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error