Skip to content
1887

Abstract

A previously undescribed, heavy-metal-tolerant, motile, Gram-negative bacterium, designated strain SK50-23, was characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SK50-23 was closely related to LMG 26467 and the non-phototrophic ‘’ NS23 (98.1 and 97.3 % 16S rRNA gene sequence similarity, respectively). Strain SK50-23 possessed a circular genome of 5.86 Mb, with a DNA G+C content of 61.9 mol%. Digital DNA–DNA hybridization showed 20.8–21.6 % similarity between strain SK50-23 and related species. In addition, the whole-genome average nucleotide identity values between strain SK50-23 and related species ranged from 75.1 to 83.5 %. The major cellular fatty acid identified in strain SK50-23 was Cω7, and the main isoprenoid quinone present was ubiquinone Q-10. Strain SK50-23 could be assigned to the genus with the species name sp. nov. based on morphological, chemotaxonomic and genome-based taxonomic characteristics, and 16S rRNA gene-based phylogenetic characteristics. The type strain of the proposed novel species is SK50-23 (=NBRC 108825=CGMCC No. 1.12037).

Funding
This study was supported by the:
  • National Science Foundation of China (Award 41963008)
    • Principle Award Recipient: ZhihuaBao
  • National Science Foundation of China (Award 32261143732)
    • Principle Award Recipient: ZhihuaBao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006238
2024-01-10
2025-01-26
Loading full text...

Full text loading...

References

  1. Meyer S, An C, Willems A. Tardiphaga robiniae gen. Syst Appl Microbiol 2012; 35:205–214 [View Article] [PubMed]
    [Google Scholar]
  2. De Meyer SE, Van Hoorde K, Vekeman B, Braeckman T, Willems A. Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 2011; 43:2384–2396 [View Article]
    [Google Scholar]
  3. Bao Z, Sato Y, Kubota M, Ohta H. Isolation and characterization of thallium-tolerant bacteria from heavy metal-polluted river sediment and non-polluted soils. Microb Environ 2006; 21:251–260 [View Article]
    [Google Scholar]
  4. Noisangiam R, Nuntagij A, Pongsilp N, Boonkerd N, Denduangboripant J et al. Heavy metal tolerant Metalliresistens boonkerdii gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand. Syst Appl Microbiol 2010; 33:374–382 [View Article] [PubMed]
    [Google Scholar]
  5. Noisangiam R, Nuntagij A, Pongsilp N, Boonkerd N, Denduangboripant J et al. Heavy metal tolerant Metalliresistens boonkerdii gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand. [Syst. Appl. Microbiol. 33 (2010) 374–382]. Proposal of Rhodopseudomonas boonkerdii sp. nov., a new heavy metal tolerant bacterium isolated from Thailand. Syst Appl Microbiol 2011; 34:166–168 [View Article] [PubMed]
    [Google Scholar]
  6. Imhoff JF, Hiraishi A, Söling J. Anoxygenic phototrophic purple bacteria. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol 2 New York: Springer; 2005 pp 119–132 [View Article]
    [Google Scholar]
  7. Ohta H, Hattori T. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Van Leeuwenhoek 1983; 49:429–446 [View Article] [PubMed]
    [Google Scholar]
  8. Bao Z, Sato Y, Fujimura R, Ohta H. Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales. Int J Syst Evol Microbiol 2014; 64:775–780 [View Article] [PubMed]
    [Google Scholar]
  9. Hanada S, Hiraishi A, Shimada K, Matsuura K. Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 1995; 45:676–681 [View Article] [PubMed]
    [Google Scholar]
  10. Nagashima KV, Hiraishi A, Shimada K, Matsuura K. Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 1997; 45:131–136 [View Article] [PubMed]
    [Google Scholar]
  11. Hisada T, Okamura K, Hiraishi A. Isolation and characterization of phototrophic purple nonsulfur bacteria from Chloroflexus and cyanobacterial mats in hot springs. Microb Environ 2007; 22:405–411 [View Article]
    [Google Scholar]
  12. Hiraishi A, Kitamura H. Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull Jpn Soc Sci Fish 1984; 50:1929–1937 [View Article]
    [Google Scholar]
  13. Yan L, Shi J, Cao J, Zhang M, Chen L et al. Paenibacillus sedimenti sp. nov., isolated from freshwater wetland sediment. Int J Syst Evol Microbiol 2023; 73:005860 [View Article] [PubMed]
    [Google Scholar]
  14. Ikemoto S, Katoh K, Komagata K. Cellular fatty acid composition in methanol-utilizing bacteria. J Gen Appl Microbiol 1978; 24:41–49 [View Article]
    [Google Scholar]
  15. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  16. Hiraishi A, Okamura K. Rhodopseudomonas telluris sp. nov., a phototrophic alphaproteobacterium isolated from paddy soil. Int J Syst Evol Microbiol 2017; 67:3369–3374 [View Article] [PubMed]
    [Google Scholar]
  17. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  18. Ohta H, Ogiwara K, Murakami E, Takahashi H, Sekiguchi M. Quinone profiling of bacterial populations developed in the surface layer of volcanic mudflow deposits from Mt. Pinatubo (the Philippines). Soil Biol Biochem 2003; 35:1155–1158 [View Article]
    [Google Scholar]
  19. Lu H, Sato Y, Fujimura R, Nishizawa T, Kamijo T et al. Limnobacter litoralis sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from a volcanic deposit, and emended description of the genus Limnobacter. Int J Syst Evol Microbiol 2011; 61:404–407 [View Article] [PubMed]
    [Google Scholar]
  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  23. Nei M, Kumar S. Molecular evolution and phylogenetics. Heredity 2013; 86:385
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article] [PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  26. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  32. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  35. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  36. Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK et al. DNRA: a short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Sci Total Environ 2020; 738:139710 [View Article] [PubMed]
    [Google Scholar]
  37. Norris P, Man WK, Hughes MN, Kelly DP. Toxicity and accumulation of thallium in bacteria and yeast. Arch Microbiol 1976; 110:279–286 [View Article] [PubMed]
    [Google Scholar]
  38. Damper PD, Epstein W, Rosen BP, Sorensen EN. Thallous ion is accumulated by potassium transport systems in Escherichia coli. Biochemistry 1979; 18:4165–4169 [View Article] [PubMed]
    [Google Scholar]
  39. Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 2002; 415:630–633 [View Article] [PubMed]
    [Google Scholar]
  40. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 2004; 22:55–61 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006238
Loading
/content/journal/ijsem/10.1099/ijsem.0.006238
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error