Skip to content
1887

Abstract

A polyphasic study was designed to determine the taxonomic status of isolate CSLK01-03, which was recovered from an Indonesian neutral hot spring and provisionally assigned to the genus . The isolate was found to have chemotaxonomic, cultural and morphological properties typical of rhodococci. It has a rod–coccus lifecycle and grows from 10 to 39 °C, from pH 6.5 to 8.0 and in the presence of 0–10 % (w/v) sodium chloride. Whole-organism hydrolysates contain -diaminopimelic acid, arabinose and galactose, the predominant menaquinone is MK-8 (H), the polar lipid pattern consists of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylmethylethanolamine and two unidentified components, it produces mycolic acids, and C is the major fatty acid. Whole-genome analyses show that the isolate and LMG 29881 (GenBank accession: JAULCK000000000) have genome sizes of 5.5 and 5.1 Mbp, respectively. These strains and DSM 44752 and DSM 43338 form well-supported lineages in 16S rRNA and whole-genome trees that are close to sister lineages composed of the type strains of and related species. The isolate can be distinguished from its closest evolutionary neighbours using combinations of cultural and phenotypic features, and by low DNA–DNA hybridization values. Based on these data it is proposed that isolate CSLK01-03 (=CCMM B1310=ICEBB-06=NCIMB 15214) be classified in the genus as sp. nov. The genomes of the isolate and its closest phylogenomic relatives are rich in biosynthetic gene clusters with the potential to synthesize new natural products, notably antibiotics. In addition, whole-genome-based taxonomy revealed that LMG 29881 and DSM 43338 belong to a single species. It is, therefore, proposed that be recognized as a heterotypic synonym of .

Funding
This study was supported by the:
  • Indonesia Endowment Fund for Education
    • Principle Award Recipient: AliBudhi Kusuma
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006236
2024-01-12
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/1/ijsem006236.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006236&mimeType=html&fmt=ahah

References

  1. Zopf W. Ueber Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. Ber Dtsch Bot Ges 1891; 9:22–28 [View Article]
    [Google Scholar]
  2. Bousfield IJ, Goodfellow M. The ‘rhodochrous’ complex and its relationships with allied taxa. In Goodfellow M, GH B, Serrano JA. eds The Biology of the Nocardiae London: Academic Press; 1976 pp 39–65
    [Google Scholar]
  3. Goodfellow M, Alderson G, Chun J. Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 1998; 74:3–20 [View Article] [PubMed]
    [Google Scholar]
  4. Gűrtler V, Seviour RJ. Systematics of embers of the genus Rhodococcus (Zopf 1891) emend Goodfellow et al. 1998. In Alvarez HM. eds Biology of Rhodococcus Heidelberg, BE: Springer; 2010 pp 1–28 [View Article]
    [Google Scholar]
  5. Tsukamura M. A further numerical taxonomic study of the rhodochrous group. Jpn J Microbiol 1974; 18:37–44 [View Article] [PubMed]
    [Google Scholar]
  6. Goodfellow M, Alderson G. The actinomycete-genus Rhodococcus: a home for the “rhodochrous” complex. J Gen Microbiol 1977; 100:99–122 [View Article] [PubMed]
    [Google Scholar]
  7. Goodfellow M, Alderson G, Chun J. Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 1998; 74:3–20 [View Article]
    [Google Scholar]
  8. Goodfellow M, Jones AL, Maldonado LA, Salanitro J. Rhodococcus aetherivorans sp. nov., a new species that contains methyl t-butyl ether-degrading actinomycetes. Syst Appl Microbiol 2004; 27:61–65 [View Article] [PubMed]
    [Google Scholar]
  9. Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J et al. Next-generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 2016; 6:38392 [View Article] [PubMed]
    [Google Scholar]
  10. Sangal V, Goodfellow M, Jones AL, Seviour RJ, Sutcliffe IC. Refined systematics of the genus Rhodococcus based on whole genome analyses. In Alvarez HM. eds Biology of Rhodococcus, 2nd. edn Springer Cham; 2019 pp 1–29 [View Article]
    [Google Scholar]
  11. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  12. Magnusson H. Spezifische Infektiose Pneumonie Beim Fohlen. ein neuer Eitererreger Beim Pferde. Arch Wiss Prakt Tierheilkd 1923; 50:22–38
    [Google Scholar]
  13. Gray PHH, Thornton HG. Soil bacteria that decompose certain aromatic compounds. Parasitenkd Infektionskrankh Hyg Abt II 1928; 73:74–96
    [Google Scholar]
  14. Tilford PE. Fasciation of sweet peas caused by Phytomonas fascians n. sp. J Agri Res 1936; 53:383–394
    [Google Scholar]
  15. Goodfellow M. Reclassification of Corynebacterium fascians (Tilford) Dowson in the genus Rhodococcus, as Rhodococcus fascians comb. nov. Syst Appl Microbiol 1984; 5:225–229 [View Article]
    [Google Scholar]
  16. Kruse W. Systematik der Streptothrickeen und Bakterien. In Carl Flügge Die Mikroorganismen vol 2 Leipzig: Vogel; 1896 pp 48–66
    [Google Scholar]
  17. Wang Y-X, Wang H-B, Zhang Y-Q, Xu L-H, Jiang C-L et al. Rhodococcus kunmingensis sp. nov., an actinobacterium isolated from a rhizosphere soil. Int J Syst Evol Microbiol 2008; 58:1467–1471 [View Article] [PubMed]
    [Google Scholar]
  18. Lee SD, Kim IS, Kim YJ, Joung Y. Rhodococcus cavernicola sp. nov., isolated from a cave, and Rhodococcus degradans is a later heterosynonym of Rhodococcus qingshengii. Int J Syst Evol Microbiol 2020; 70:4409–4415 [View Article]
    [Google Scholar]
  19. Kim SM, Lee SD, Koh YS, Kim IS. Antrihabitans stalagmiti sp. nov., isolated from a larva cave and a proposal to transfer Rhodococcus cavernicola Lee et al. 2020 to a new genus Spelaeibacter as Spelaeibacter cavernicola gen. nov. comb. nov. Antonie van Leeuwenhoek 2022; 115:521–532 [View Article] [PubMed]
    [Google Scholar]
  20. Sangal V, Goodfellow M, Jones AL, Sutcliffe IC. A stable home for an equine pathogen: valid publication of the binomial Prescottella equi gen. nov., comb. nov., and reclassification of four rhodococcal species into the genus Prescottella. Int J Syst Evol Microbiol 2022; 72:005551 [View Article] [PubMed]
    [Google Scholar]
  21. Castellani A, Chalmers AJ. Manual of Tropical Medicine, 3rd edn London: Baillière, Tindall and Cox; 1919 pp 183–185 [View Article]
    [Google Scholar]
  22. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608 [View Article] [PubMed]
    [Google Scholar]
  23. Lee SD, Kim IS. Rhodococcus spelaei sp. nov., isolated from a cave, and proposals that Rhodococcus biphenylivorans is a later synonym of Rhodococcus pyridinivorans, Rhodococcus qingshengii and Rhodococcus baikonurensis are later synonyms of Rhodococcus erythropolis, and Rhodococcus percolatus and Rhodococcus imtechensis are later synonyms of Rhodococcus opacus. Int J Syst Evol Microbiol 2021; 71:004890 [View Article] [PubMed]
    [Google Scholar]
  24. Baek JH, Baek W, Jeong SE, Lee SC, Jin HM et al. Rhodococcus oxybenzonivorans sp. nov., a benzophenone-3-degrading bacterium, isolated from stream sediment. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  25. Kämpfer P, Glaeser SP, Blom J, Wolf J, Benning S et al. Rhodococcus pseudokoreensis sp. nov. isolated from the rhizosphere of young M26 apple rootstocks. Arch Microbiol 2022; 204: [View Article]
    [Google Scholar]
  26. Zhang D, Su Z, Li L, Tang W. Rhodococcus spongiicola sp. nov. and Rhodococcus xishaensis sp. nov., from marine sponges. Int J Syst Evol Microbiol 2021; 71: [View Article]
    [Google Scholar]
  27. Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K et al. Bergeys Manual of Systematic Bacteriology: The Actinobacteria, 2nd edn. New York, NY: Springer; 2012 pp 437–484 [View Article]
    [Google Scholar]
  28. Ceniceros A, Dijkhuizen L, Petrusma M, Medema MH. Genome-based exploration of the specialized metabolic capacities of the genus Rhodococcus. BMC Genomics 2017; 18:593 [View Article] [PubMed]
    [Google Scholar]
  29. Kim D, Choi KY, Yoo M, Zylstra GJ, Kim E. Biotechnological potential of Rhodococcus biodegradative pathways. J Microbiol Biotechnol 2018; 28:1037–1051 [View Article] [PubMed]
    [Google Scholar]
  30. Cappelletti M, Presentato A, Piacenza E, Firrincieli A, Turner RJ et al. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 2020; 104:8567–8594 [View Article] [PubMed]
    [Google Scholar]
  31. Méndez-Cruz AR, Félix-Bermúdez GE, Aguilar-Escobar DV, Vega-Vega L, Morales-Estrada AI et al. Bloodstream infection by Rhodococcus corynebacterioides in a pediatric patient diagnosed with high-risk retinoblastoma. Rev Argent Microbiol 2023; 55:68–72 [View Article] [PubMed]
    [Google Scholar]
  32. Dhaouadi S, Mougou AHM, Rhouma A. The plant pathogen Rhodococcus fascians. History, disease symptomatology, host range, pathogenesis and plant–pathogen interaction. Ann Appl Biol 2020; 177:4–15 [View Article]
    [Google Scholar]
  33. Vickers JC, Williams ST. An assessment of plate inoculation procedures for the enumeration and isolation of soil Streptomycetes. Microbios Lett 1987; 35:113–117
    [Google Scholar]
  34. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  35. Ramaprasad EVV, Mahidhara G, Sasikala C, Ramana CV. Rhodococcus electrodiphilus sp. nov., a marine electro active actinobacterium isolated from coral reef. Int J Syst Evol Microbiol 2018; 68:2644–2649 [View Article] [PubMed]
    [Google Scholar]
  36. O’Donnell AG, Falconer C, Goodfellow M, Ward AC, Williams E. Biosystematics and diversity amongst novel carboxydotrophic actinomycetes. Antonie van Leeuwenhoek 1994; 64:325–340 [View Article]
    [Google Scholar]
  37. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  38. Lechevalier MP, Lechevalier HA. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  39. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88:200–204 [View Article] [PubMed]
    [Google Scholar]
  40. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  41. Uchida K, Kudo T, Suzuki K-I, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999; 45:49–56 [View Article] [PubMed]
    [Google Scholar]
  42. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  43. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  44. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark: DE: MIDI; 1990
    [Google Scholar]
  45. Kusuma AB, Nouioui I, Klenk HP, Goodfellow M. Streptomyces harenosi sp. nov., a home for a gifted strain isolated from Indonesian sand dune soil. Int J Syst Evol Microbiol 2020; 70:4874–4882 [View Article] [PubMed]
    [Google Scholar]
  46. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  47. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  48. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  49. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  50. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  51. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  52. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  53. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  54. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  55. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  56. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  57. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  58. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  59. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article] [PubMed]
    [Google Scholar]
  60. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  61. Kusuma AB, Nouioui I, Goodfellow M. Genome-based classification of the Streptomyces violaceusniger clade and description of Streptomyces sabulosicollis sp. nov. from an Indonesian sand dune. Antonie van Leeuwenhoek 2021; 114:859–873 [View Article] [PubMed]
    [Google Scholar]
  62. Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008; 57:758–771 [View Article] [PubMed]
    [Google Scholar]
  63. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  64. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  65. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  66. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  67. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  68. Murray PR, Boron EJ, Pfaller MA, Tenover FC, Yolken RH. Manual of Clinical Microbiology, 7th edn Washington, DC: ASM Press; 1999
    [Google Scholar]
  69. Kelly KL. Centroid notations for revised ISCC-NBS colour name blocks. J Res Nat Bureau Stand USA 1958; 61:472
    [Google Scholar]
  70. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  71. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res 2020; 48:D454–D458 [View Article] [PubMed]
    [Google Scholar]
  72. Mungan MD, Alanjary M, Blin K, Weber T, Medema MH et al. ARTS 2.0: feature updates and expansion of the antibiotic resistant target seeker for comparative genome mining. Nucleic Acids Res 2020; 48:W546–W552 [View Article] [PubMed]
    [Google Scholar]
  73. Alanjary M, Kronmiller B, Adamek M, Blin K, Weber T et al. The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res 2017; 45:W42–W48 [View Article] [PubMed]
    [Google Scholar]
  74. Carran CJ, Jordan M, Drechsel H, Schmid DG, Winkelmann G. Heterobactins: a new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. Biometals 2001; 14:119–125 [View Article] [PubMed]
    [Google Scholar]
  75. Takahashi H, Yamashita Y, Takaoka H, Nakamura J, Yoshihama M et al. Inhibitory action of reveromycin A on TGF-alpha-dependent growth of ovarian carcinoma BG-1 in vitro and in vivo. . Oncol Res 1997; 9:7–11 [PubMed]
    [Google Scholar]
  76. Haneishi T, Terahara A, Hamano K, Arai M. New antibiotics, methylenomycins A and B. 3. Chemical modifications of methylenomycin A and structure-activity correlations in methylenomycins. J Antibiot 1974; 27:400–407 [View Article] [PubMed]
    [Google Scholar]
  77. Misiek M, Fardig OB, Gourevitch A, Johnson DL, Hooper IR et al. Telomycin, a new antibiotic. Antibiot Annu 1957; 5:852–855 [PubMed]
    [Google Scholar]
  78. Toki S, Agatsuma T, Ochiai K, Saitoh Y, Ando K et al. RP-1776, a novel cyclic peptide produced by Streptomyces sp., inhibits the binding of PDGF to the extracellular domain of its receptor. J Antibiot 2001; 54:405–414 [View Article] [PubMed]
    [Google Scholar]
  79. Nagata H, Ochiai K, Aotani Y, Ando K, Yoshida M et al. Lymphostin (LK6-A), a novel immunosuppressant from Streptomyces sp. KY11783: taxonomy of the producing organism, fermentation, isolation and biological activities. J Antibiot 1997; 50:537–542 [View Article] [PubMed]
    [Google Scholar]
  80. Bosello M, Robbel L, Linne U, Xie X, Marahiel MA. Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RHA1. J Am Chem Soc 2011; 133:4587–4595 [View Article] [PubMed]
    [Google Scholar]
  81. Zhu J, Chen W, Li Y-Y, Deng J-J, Zhu D-Y et al. Identification and catalytic characterization of a nonribosomal peptide synthetase-like (NRPS-like) enzyme involved in the biosynthesis of echosides from Streptomyces sp. LZ35. Gene 2014; 546:352–358 [View Article] [PubMed]
    [Google Scholar]
  82. Chu M, Yarborough R, Schwartz J, Patel MG, Horan AC et al. Sch 47554 and Sch 47555, two novel antifungal antibiotics produced from a Streptomyces sp. J Antibiot 1993; 46:861–865 [View Article] [PubMed]
    [Google Scholar]
  83. Sun C, Yang Z, Zhang C, Liu Z, He J et al. Genome mining of Streptomyces atratus SCSIO ZH16: discovery of atratumycin and identification of its biosynthetic gene cluster. Org Lett 2019; 21:1453–1457 [View Article] [PubMed]
    [Google Scholar]
  84. Yang Z, Wei X, He J, Sun C, Ju J et al. Characterization of the noncanonical regulatory and transporter genes in atratumycin biosynthesis and production in a heterologous host. Marine Drugs 2019; 17:560 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006236
Loading
/content/journal/ijsem/10.1099/ijsem.0.006236
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error