1887

Abstract

In this study, a novel genus is proposed, , with a novel species, , isolated from nests of stingless bees ( sp.). The taxonomic novelty was determined by the phylogenetic analysis of DNA sequences from the internal transcribed spacer regions, small subunit rRNA (18S rRNA), large subunit rRNA (28S rRNA) and the RNA polymerase II second–largest subunit gene () and paired with our morphological studies. Based on this single species, is characterized by greyish green to dark grey colonies, densely and profusely branched conidiophores and single-celled, variously shaped hyaline conidia. constitutes a distinct, well-supported lineage within and can be clearly distinguished from other genera both by DNA sequence analysis and morphological traits. The holotype of is URM 95352. The ex-type strain has been deposited in the Micoteca URM culture collection as URM 8721 and URM 8722. The MycoBank accession number is MB 849456 for the genus and MB 849456 for the species.

Funding
This study was supported by the:
  • Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Award 88887.639774/2021-00; 88887.814308/2023-00)
    • Principle Award Recipient: JoanaC. Moura
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006227
2024-01-09
2024-12-07
Loading full text...

Full text loading...

References

  1. Wijayawardene N, Hyde K, Dai D, Sánchez-García M, Goto B et al. Outline of fungi and fungus-like taxa – 2021. Mycosphere 2022; 13:53–453 [View Article]
    [Google Scholar]
  2. Zhang N, Sung G, Castlebury LA, Seifert KA, Rossman AY et al. An overview of molecular phylogeny of the Sordariomycetes. Mycologia 2007; 98:1076–1087 [View Article] [PubMed]
    [Google Scholar]
  3. Raja HA, Shearer CA. Freshwater ascomycetes: new and noteworthy species from aquatic habitats in Florida. Mycologia 2008; 100:467–489 [View Article] [PubMed]
    [Google Scholar]
  4. Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones E. Refined families of Sordariomycetes. Mycosphere 2020; 11:305–1059 [View Article]
    [Google Scholar]
  5. von Höhnel F. Mykologische Fragmente. Nrn. 120–90. Annales Mycologici 1917; 15:293–383
    [Google Scholar]
  6. Malloch D, Cain RF. Five new genera in the new family Pseudeurotiaceae. Can J Bot 1970; 48:1815–1825 [View Article]
    [Google Scholar]
  7. Gams W, McGinnis MR. Phialemonium, a new anamorph genus intermediate between Phialophora and Acremonium. Mycologia 1983; 75:977–987 [View Article]
    [Google Scholar]
  8. Davolos D, Pietrangeli B, Persiani AM, Maggi O. Victoriomyces antarcticus gen. nov., sp. nov., a distinct evolutionary lineage of the Cephalothecaceae (Ascomycota) based on sequence-based phylogeny and morphology. Int J Syst Evol Microbiol 2019; 69:1099–1110 [View Article] [PubMed]
    [Google Scholar]
  9. Barbosa RN, Leong SL, Vinnere-Pettersson O, Chen AJ, Souza-Motta CM et al. Phylogenetic analysis of Monascus and new species from honey, pollen and nests of stingless bees. Stud Mycol 2017; 86:29–51 [View Article] [PubMed]
    [Google Scholar]
  10. Barbosa R do N, Bezerra JDP, Santos AC da S, Melo RFR, Houbraken J et al. Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhous sp. nov. Acta Bot Bras 2020; 34:409–429 [View Article]
    [Google Scholar]
  11. Masclaux F, Guého E, de Hoog GS, Christen R. Phylogenetic relationships of human-pathogenic Cladosporium (Xylohypha) species inferred from partial LS rRNA sequences. J Med Vet Mycol 1995; 33:327–338 [View Article] [PubMed]
    [Google Scholar]
  12. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990; 172:4238–4246 [View Article] [PubMed]
    [Google Scholar]
  13. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. eds PCR Protocols: A Guide to Methods and Applications vol 18 1990 pp 315–322
    [Google Scholar]
  14. Hubka V, Kolarik M. β-tubulin paralogue tubC is frequently misidentified as the benA gene in Aspergillus section Nigri taxonomy: primer specificity testing and taxonomic consequences. Persoonia 2012; 29:1–10 [View Article] [PubMed]
    [Google Scholar]
  15. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 1999; 16:1799–1808 [View Article] [PubMed]
    [Google Scholar]
  16. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999; 91:553–556 [View Article]
    [Google Scholar]
  17. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  19. Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. 2016. Version 3.61. n.d http://mesquiteproject.org
  20. Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer AJ, Nguyen L-T et al. The phylogenetic likelihood library. Syst Biol 2015; 64:356–362 [View Article] [PubMed]
    [Google Scholar]
  21. Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond 2012 pp 1–8
    [Google Scholar]
  22. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  23. Rambaut A. FigTree, Version 1.4.3. Edinburgh, Institute of Evolutionary Biology, University of Edinburgh 2016
    [Google Scholar]
  24. Rayner RW. A Mycological Colour Chart 1970
    [Google Scholar]
  25. Michener CD. The Bees of the World Baltimore: The John Hopkins University Press; 2007 [View Article]
    [Google Scholar]
  26. Engel MS. Notes on South American stingless bees of the genus Scaptotrigona (Hymenoptera: Apidae), part III: a revised infrageneric classification and new species. J Melittol 20221–29 [View Article]
    [Google Scholar]
  27. Engel MS. Notes on South American stingless bees of the genus Scaptotrigona (Hymenoptera: Apidae), Part IV: Four new species of group B from the Andean region. J Melittol 2022; 112: [View Article]
    [Google Scholar]
  28. Menezes C, Vollet-Neto A, Marsaioli AJ, Zampieri D, Fontoura IC et al. A Brazilian social bee must cultivate fungus to survive. Curr Biol 2015; 25:2851–2855 [View Article]
    [Google Scholar]
  29. Paludo CR, Menezes C, Silva-Junior EA, Vollet-Neto A, Andrade-Dominguez A et al. Stingless bee larvae require fungal steroid to pupate. Sci Rep 2018; 8:1122 [View Article] [PubMed]
    [Google Scholar]
  30. de Paula GT, Melo WG da P, de Castro I, Menezes C, Paludo CR et al. Further evidences of an emerging stingless bee-yeast symbiosis. Front Microbiol 2023; 14:1221724 [View Article] [PubMed]
    [Google Scholar]
  31. Tiago MRM, Cortez ACA, Souza JVB, Brito DV, Carvalho-Zilse GA. Fungi associated with hives and castes of the Amazonian stingless bees Melipona interrupta and Melipona seminigra; 2022
  32. Santos ACC, Borges LDF, Rocha NDC, de Carvalho Azevedo VA, Bonetti AM et al. Bacteria, yeasts, and fungi associated with larval food of Brazilian native stingless bees. Sci Rep 2023; 13:5147 [View Article] [PubMed]
    [Google Scholar]
  33. Barbosa RN, Bezerra JDP, Souza-Motta CM, Frisvad JC, Samson RA et al. New Penicillium and Talaromyces species from honey, pollen and nests of stingless bees. Antonie van Leeuwenhoek 2018; 111:1883–1912 [View Article] [PubMed]
    [Google Scholar]
  34. Barbosa R do N, Santos JEF dos, Bezerra JDP, Istel Ł, Houbraken J et al. Brazilian Atlantic Forest and Pampa biomes in the spotlight: an overview of Aspergillus, Penicillium, and Talaromyces (Eurotiales) species and the description of Penicillium nordestinense sp. nov. Acta Bot Bras 2022; 36: [View Article]
    [Google Scholar]
  35. Kirschstein W. Beiträge zur Kenntnis der Ascomyceten und ihrer Nebenformen besonders aus der Mark Brandenburg und dem Bayerischen Walde. Annales Mycologici 1936; 34:180–210
    [Google Scholar]
  36. Hou LW, Giraldo A, Groenewald JZ, Rämä T, Summerbell RC et al. Redisposition of acremonium-like fungi in Hypocreales. Stud Mycol 2023; 105:23–203 [View Article]
    [Google Scholar]
  37. Perdomo H, Sutton DA, García D, Fothergill AW, Gené J et al. Molecular and phenotypic characterization of Phialemonium and Lecythophora isolates from clinical samples. J Clin Microbiol 2011; 49:1209–1216 [View Article] [PubMed]
    [Google Scholar]
  38. Wynns AA, Jensen AB, Eilenberg J, James R. Ascosphaera subglobosa, a new spore cyst fungus from North America associated with the solitary bee Megachile rotundata. Mycologia 2012; 104:108–114 [View Article] [PubMed]
    [Google Scholar]
  39. Wynns AA. Convergent evolution of highly reduced fruiting bodies in Pezizomycotina suggests key adaptations to the bee habitat. BMC Evol Biol 2015; 15:145 [View Article] [PubMed]
    [Google Scholar]
  40. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR et al. The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 2005; 36:563–595 [View Article]
    [Google Scholar]
  41. van de Peppel LJJ, Aanen DK, Biedermann PHW. Low intraspecific genetic diversity indicates asexuality and vertical transmission in the fungal cultivars of ambrosia beetles. Fungal Ecol 2018; 32:57–64 [View Article]
    [Google Scholar]
  42. Tekpinar AD, Kalmer A. Utility of various molecular markers in fungal identification and phylogeny. Nova Hedwigia 2019; 109:187–224 [View Article]
    [Google Scholar]
  43. Акулов ОЮ. Морфологічні Ознаки, Поширення Та Екологічні Уподобання Albertiniella Polyporicola (JACZ.) Malloch et Cain. Чорноморський ботанічний журнал 2013; 9:553–558
    [Google Scholar]
  44. Fuckel L. Symbolae Mycologicae. Beiträge Zur Kenntniss der Rheinischen Pilze. Erster Nachtrag. Jahrbücher des Nassauischen Vereins für Naturkunde 1871; 25–26:287–346
    [Google Scholar]
  45. Perdomo H, García D, Gené J, Cano J, Sutton DA et al. Phialemoniopsis, a new genus of Sordariomycetes, and new species of Phialemonium and Lecythophora. Mycologia 2013; 105:398–421 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006227
Loading
/content/journal/ijsem/10.1099/ijsem.0.006227
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error