Skip to content
1887

Abstract

A Gram-positive, acid-fast, aerobic, rapidly growing and non-motile strain was isolated from lead–zinc mine tailing sampled in Lanping, Yunnan province, Southwest China. 16S rRNA gene sequence analysis showed that the most closely related species of strain KC 300 was CGMCC 4.5724 (98.47 %). Additionally, phylogenomic and specific conserved signature indel analysis revealed that strain KC 300 should be a member of genus , and CECT 8779 and DSM 104744 should also members of genus . The genome size of strain KC 300 was 6.2 Mb with an DNA G+C content of 69.2 mol%. Chemotaxonomic characteristics of strain KC 300 were also consistent with the genus . The average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity values, as well as phenotypic, physiological and biochemical characteristics, support that strain KC 300 represents a new species within the genus , for which the name sp. nov. is proposed, with the type strain KC 300 (=CGMCC 1.19494=JCM 35915). In addition, we reclassified and as comb. nov. and comb. nov., respectively.

Funding
This study was supported by the:
  • Science and Technology Planning Project of Yunnan Province (Award 202205AG070001)
    • Principle Award Recipient: Shu-KunTang
  • Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province (Award YNWR-QNBJ-2018-011)
    • Principle Award Recipient: Yan-RuCao
  • Joint Special Project of Universities in Yunnan Province (Award 202001BA070001-144)
    • Principle Award Recipient: XiuChen
  • Applied Basic Research Foundation of Yunnan Province (Award 202301AT070051)
    • Principle Award Recipient: Yan-RuCao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006221
2024-01-10
2025-01-17
Loading full text...

Full text loading...

References

  1. Gupta RS, Lo B, Son J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Front Microbiol 2018; 9:67 [View Article] [PubMed]
    [Google Scholar]
  2. Brown-Elliott BA, Wallace RJ. Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev 2002; 15:716–746 [View Article] [PubMed]
    [Google Scholar]
  3. Adékambi T, Berger P, Raoult D, Drancourt M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 2006; 56:133–143 [View Article] [PubMed]
    [Google Scholar]
  4. Salas NM, Klein N. Mycobacterium goodii: an emerging nosocomial pathogen: a case report and review of the literature. Infect Dis Clin Pract 2017; 25:62–65 [View Article] [PubMed]
    [Google Scholar]
  5. Morgado S, Ramos N de V, Freitas F, da Fonseca ÉL, Vicente AC. Mycolicibacterium fortuitum genomic epidemiology, resistome and virulome. Mem Inst Oswaldo Cruz 2022; 116:e210247 [View Article] [PubMed]
    [Google Scholar]
  6. Konjek J, Souded S, Guerardel Y, Trivelli X, Bernut A. Members of a novel group of non-pigmented rapidly growing mycobacteria recovered from a water distribution system. Int J Syst Evol Microbiol 2016; 66:3694–3702
    [Google Scholar]
  7. Zhang D-F, Chen X, Zhang X-M, Zhi X-Y, Yao J-C et al. Mycobacterium sediminis sp. nov. and Mycobacterium arabiense sp. nov., two rapidly growing members of the genus Mycobacterium. Int J Syst Evol Microbiol 2013; 63:4081–4086 [View Article] [PubMed]
    [Google Scholar]
  8. Pan X, Li Z, Huang S, Huang Y, Wang Q et al. Mycolicibacterium aurantiacum sp. nov. and Mycolicibacterium xanthum sp. nov., two novel actinobacteria isolated from mangrove sediments. Int J Syst Evol Microbiol 2022; 72:005595 [View Article] [PubMed]
    [Google Scholar]
  9. Tran PM, Dahl JL. Mycobacterium sarraceniae sp. nov. and Mycobacterium helvum sp. nov., isolated from the pitcher plant Sarracenia purpurea. Int J Syst Evol Microbiol 2016; 66:4480–4485 [View Article] [PubMed]
    [Google Scholar]
  10. Magee J, Ward A. Genus I. Mycobacterium Lehmann and Neumann 1896 363AL emend. In Garrity GM. eds Bergey’s Manual of Systematic Bacteriology Springer; 2012 pp 312–375
    [Google Scholar]
  11. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  12. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  13. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP et al. Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 2001; 51:357–363 [View Article] [PubMed]
    [Google Scholar]
  14. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  15. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  21. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  26. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  27. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  28. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  29. Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 2022; 50:D912–D917 [View Article] [PubMed]
    [Google Scholar]
  30. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article] [PubMed]
    [Google Scholar]
  31. Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res 2014; 42:D737–43 [View Article] [PubMed]
    [Google Scholar]
  32. Marrakchi H, Lanéelle MA, Daffé M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 2014; 21:67–85 [View Article] [PubMed]
    [Google Scholar]
  33. Tippelt A, Möllmann S, Albersmeier A, Jaenicke S, Rückert C et al. Mycolic acid biosynthesis genes in the genome sequence of Corynebacterium atypicum DSM 44849. Genome Announc 2014; 2:e00845-14 [View Article] [PubMed]
    [Google Scholar]
  34. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  35. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  36. Forrellad MA, Klepp LI, Gioffré A, Sabio y García J, Morbidoni HR et al. Virulence factors of the Mycobacterium tuberculosis complex. Virulence 2013; 4:3–66 [View Article] [PubMed]
    [Google Scholar]
  37. Solans L, Aguiló N, Samper S, Pawlik A, Frigui W et al. A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as A novel ESX-1 component. Infect Immun 2014; 82:3446–3456 [View Article] [PubMed]
    [Google Scholar]
  38. Biswas RK, Dutta D, Tripathi A, Feng Y, Banerjee M et al. Identification and characterization of Rv0494: a fatty acid-responsive protein of the GntR/FadR family from Mycobacterium tuberculosis. Microbiology 2013; 159:913–923 [View Article] [PubMed]
    [Google Scholar]
  39. Jensen KA. Reinzuch und Typen Bestimmung von Tuberkelbazillenstämen. Zentralbl Bakteriol 1932; 125:222–239
    [Google Scholar]
  40. Lorian V. Differentiation of Mycobacterium tuberculosis and Runyon Group 3 “V” strains on direct cord-reading agar. Am Rev Respir Dis 1968; 97:1133–1135 [View Article] [PubMed]
    [Google Scholar]
  41. Berd D. Laboratory identification of clinically important aerobic actinomycetes. Appl Microbiol 1973; 25:665–681 [View Article] [PubMed]
    [Google Scholar]
  42. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  43. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  44. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. eds Methods for General and Molecular Microbiology Washington: American Society for Microbiology; 2007 pp 330–393 [View Article]
    [Google Scholar]
  45. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  46. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  47. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Method 1984; 2:233–241 [View Article]
    [Google Scholar]
  48. Tang S-K, Wang Y, Chen Y, Lou K, Cao L-L et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009; 59:2025–2031 [View Article] [PubMed]
    [Google Scholar]
  49. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  50. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88:200–204 [View Article] [PubMed]
    [Google Scholar]
  51. Frischmann A, Knoll A, Hilbert F, Zasada AA, Kämpfer P et al. Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol 2012; 62:2194–2200 [View Article] [PubMed]
    [Google Scholar]
  52. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  53. Zhang Y, Zhang J, Fang C, Pang H, Fan J. Mycobacterium litorale sp. nov., a rapidly growing mycobacterium from soil. Int J Syst Evol Microbiol 2012; 62:1204–1207 [View Article]
    [Google Scholar]
  54. Nouioui I, Carro L, Sangal V, Jando M, Igual JM et al. Formal description of Mycobacterium neglectum sp. nov. and Mycobacterium palauense sp. nov., rapidly growing actinobacteria. Antonie van Leeuwenhoek 2018; 111:1209–1223 [View Article] [PubMed]
    [Google Scholar]
  55. Paniz-Mondolfi AE, Greninger AL, Ladutko L, Brown-Elliott BA, Vasireddy R et al. Mycobacterium grossiae sp. nov., a rapidly growing, scotochromogenic species isolated from human clinical respiratory and blood culture specimens. Int J Syst Evol Microbiol 2017; 67:4345–4351 [View Article] [PubMed]
    [Google Scholar]
  56. Reischl U, Melzl H, Kroppenstedt RM, Miethke T, Naumann L et al. Mycobacterium monacense sp. nov. Int J Syst Evol Microbiol 2006; 56:2575–2578 [View Article] [PubMed]
    [Google Scholar]
  57. Cheng Y, Lei W, Wang X, Tian Z, Liu H et al. Mycolicibacterium baixiangningiae sp. nov. and Mycolicibacterium mengxianglii sp. nov., two new rapidly growing mycobacterial species. Int J Syst Evol Microbiol 2021; 71:005019 [View Article] [PubMed]
    [Google Scholar]
  58. Tortoli E, Piersimoni C, Kroppenstedt RM, Montoya-Burgos JI, Reischl U et al. Mycobacterium doricum sp. nov. Int J Syst Evol Microbiol 2001; 51:2007–2012 [View Article] [PubMed]
    [Google Scholar]
  59. Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J et al. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res 2021; 49:D498–D508 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006221
Loading
/content/journal/ijsem/10.1099/ijsem.0.006221
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error