Skip to content
1887

Abstract

A fully assembled spirochaete genome was identified as a contaminating scaffold in our red abalone () genome assembly. In this paper, we describe the analysis of this bacterial genome. The assembled spirochaete genome is 3.25 Mb in size with 48.5 mol% G+C content. The proteomes of 38 species were compared with the spirochaete genome and it was discovered to form an independent branch within the family on the phylogenetic tree. The comparison of 16S rRNA sequences and average nucleotide identity scores between the spirochaete genome with known species of different families in indicate that it is an unknown species. Further, the percentage of conserved proteins compared to neighbouring taxa confirm that it does not belong to a known genus within . We propose the name Haliotispira prima gen. nov., sp. nov. based on its taxonomic placement and origin. We also tested for the presence of this species in different species of abalone and found that it is also present in white abalone (). In addition, we highlight the need for better classification of taxa within the class .

Keyword(s): abalone , Candidatus , genome and spirochaete
Funding
This study was supported by the:
  • California Sea Grant, University of California, San Diego (Award R/HCME-10)
    • Principal Award Recipient: JohnHyde
  • Office of Advanced Cyberinfrastructure (Award MCB140217)
    • Principal Award Recipient: AndrewJ Severin
  • Southwest Fisheries Science Center (Award 15WCR012)
    • Principal Award Recipient: AndrewJ Severin
  • Oak Ridge Institute for Science and Education (Award DE-SC0014664)
    • Principal Award Recipient: SharuPaul Sharma
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006198
2024-01-05
2025-11-08

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ijsem/74/1/ijsem006198.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.006198&mimeType=html&fmt=ahah

References

  1. Paster BJ. Spirochaetes. In Trujillo ME, DeVos P, Hedlund B, Kämpfer P, Rainey FA. eds Bergey’s Manual of Systematics of Archaea and Bacteria Wiley; 2015
    [Google Scholar]
  2. Harwood CS, Jannasch HW, Canale-Parola E. Anaerobic spirochete from a deep-sea hydrothermal vent. Appl Environ Microbiol 1982; 44:234–237 [View Article] [PubMed]
    [Google Scholar]
  3. Seshadri R, Myers GSA, Tettelin H, Eisen JA, Heidelberg JF et al. Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proc Natl Acad Sci U S A 2004; 101:5646–5651 [View Article] [PubMed]
    [Google Scholar]
  4. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 1999; 283:686–689 [View Article] [PubMed]
    [Google Scholar]
  5. Cutler SJ, Moss J, Fukunaga M, Wright DJ, Fekade D et al. Borrelia recurrentis characterization and comparison with relapsing-fever, Lyme-associated, and other Borrelia spp. Int J Syst Bacteriol 1997; 47:958–968 [View Article] [PubMed]
    [Google Scholar]
  6. Mikosza AS, La T, Brooke CJ, Lindboe CF, Ward PB et al. PCR amplification from fixed tissue indicates frequent involvement of Brachyspira aalborgi in human intestinal spirochetosis. J Clin Microbiol 1999; 37:2093–2098 [View Article] [PubMed]
    [Google Scholar]
  7. Smajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol 2012; 12:191–202 [View Article] [PubMed]
    [Google Scholar]
  8. Matsuyama T, Yasuike M, Fujiwara A, Nakamura Y, Takano T et al. A Spirochaete is suggested as the causative agent of Akoya oyster disease by metagenomic analysis. PLoS One 2017; 12:e0182280 [View Article] [PubMed]
    [Google Scholar]
  9. Husmann G, Gerdts G, Wichels A. Spirochetes in crystalline styles of marine bivalves: group-specific PCR detection and 16S rRNA sequence analysis. J Shellfish Res 2010; 29:1069–1075 [View Article]
    [Google Scholar]
  10. Sitnikova T, Michel E, Tulupova Y, Khanaev I, Parfenova V et al. Spirochetes in gastropods from Lake Baikal and North American freshwaters: new multi-family, multi-habitat host records. Symbiosis 2012; 56:103–110 [View Article]
    [Google Scholar]
  11. Michl SC, Windisch W, Geist J. Function of the crystalline style and first detection of laminarinase activity in freshwater mussels of the genus Anodonta. J Molluscan Stud 2014; 80:198–200 [View Article]
    [Google Scholar]
  12. Duperron S, Fiala-Médioni A, Caprais J-C, Olu K, Sibuet M. Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol Ecol 2007; 59:64–70 [View Article] [PubMed]
    [Google Scholar]
  13. Mizutani Y, Mori T, Miyazaki T, Fukuzaki S, Tanaka R. Microbial community analysis in the gills of abalones suggested possible dominance of epsilonproteobacterium in Haliotis gigantea. PeerJ 2020; 8:e9326 [View Article] [PubMed]
    [Google Scholar]
  14. Karpov K, Haaker P, Taniguchi I, Rogers-Bennett L. Serial depletion and the collapse of the California Abalone (Haliotis spp.) fishery. Can Spec Publ Fisheries Aquatic Sci 200011–24
    [Google Scholar]
  15. Masonbrink RE, Purcell CM, Boles SE, Whitehead A, Hyde JR et al. An annotated genome for Haliotis rufescens (red abalone) and resequenced green, pink, pinto, black, and white abalone species. Genome Biol Evol 2019; 11:431–438 [View Article] [PubMed]
    [Google Scholar]
  16. Andrews S. Fastqc - a quality control tool for high throughput sequence data. Babraham Bioinforma 2010
    [Google Scholar]
  17. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL et al. The MaSuRCA genome assembler. Bioinformatics 2013; 29:2669–2677 [View Article] [PubMed]
    [Google Scholar]
  18. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  20. Emms DM, Kelly S. STRIDE: Species Tree Root Inference from Gene Duplication Events. Mol Biol Evol 2017; 34:3267–3278 [View Article] [PubMed]
    [Google Scholar]
  21. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:1–4 [View Article] [PubMed]
    [Google Scholar]
  22. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  24. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:1–9 [View Article] [PubMed]
    [Google Scholar]
  25. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  26. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  27. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32:2847–2849 [View Article] [PubMed]
    [Google Scholar]
  28. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019; 37:907–915 [View Article] [PubMed]
    [Google Scholar]
  29. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article] [PubMed]
    [Google Scholar]
  30. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V et al. Twelve years of SAMtools and BCFtools. Gigascience 2021; 10:giab008 [View Article] [PubMed]
    [Google Scholar]
  31. Diesh C, Stevens GJ, Xie P, De Jesus Martinez T, Hershberg EA et al. JBrowse 2: a modular genome browser with views of synteny and structural variation. Genome Biol 2023; 24:1–21 [View Article] [PubMed]
    [Google Scholar]
  32. Inagaki S, Onishi S, Kuramitsu HK, Sharma A. Porphyromonas gingivalis vesicles enhance attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “Tannerella forsythia”. Infect Immun 2006; 74:5023–5028 [View Article] [PubMed]
    [Google Scholar]
  33. Ebbes M, Bleymüller WM, Cernescu M, Nölker R, Brutschy B et al. Fold and function of the InlB B-repeat. J Biol Chem 2011; 286:15496–15506 [View Article] [PubMed]
    [Google Scholar]
  34. Handrich MR, Garg SG, Sommerville EW, Hirt RP, Gould SB. Characterization of the BspA and Pmp protein family of trichomonads. Parasit Vectors 2019; 12:1–5 [View Article] [PubMed]
    [Google Scholar]
  35. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  36. Graña-Miraglia L, Sikutova S, Vancová M, Bílý T, Fingerle V et al. Spirochetes isolated from arthropods constitute a novel genus Entomospira genus novum within the order Spirochaetales. Sci Rep 2020; 10:17053 [View Article] [PubMed]
    [Google Scholar]
  37. Sikutová S, Halouzka J, Mendel J, Knoz J, Rudolf I. Novel spirochetes isolated from mosquitoes and black flies in the Czech republic. J Vector Ecol 2010; 35:50–55 [View Article] [PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  39. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  40. Ben Hania W, Joseph M, Schumann P, Bunk B, Fiebig A et al. Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated from a hypersaline microbial mat. Stand Genomic Sci 2015; 10:1–4 [View Article] [PubMed]
    [Google Scholar]
  41. Margos G, Gofton A, Wibberg D, Dangel A, Marosevic D et al. The genus Borrelia reloaded. PLoS One 2018; 13:e0208432 [View Article] [PubMed]
    [Google Scholar]
  42. Margos G, Castillo-Ramirez S, Cutler S, Dessau RB, Eikeland R et al. Rejection of the name Borreliella and all proposed species comb. nov. placed therein. Int J Syst Evol Microbiol 2020; 70:3577–3581 [View Article] [PubMed]
    [Google Scholar]
  43. Brune A, Song Y, Oren A, Paster BJ. A new family for ‘Termite gut Treponemes’: description of Breznakiellaceae fam. nov., Gracilinema caldarium gen. nov., comb. nov., Leadbettera azotonutricia gen. nov., comb. nov., Helmutkoenigia isoptericolens gen. nov., comb. nov., and Zuelzera stenostrepta gen. nov., comb. nov., and proposal of Rectinemataceae fam. nov. Int J Syst Evol Microbiol 2022; 72:005439
    [Google Scholar]
  44. Jordan IK, Makarova KS, Spouge JL, Wolf YI, Koonin EV. Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res 2001; 11:555–565 [View Article] [PubMed]
    [Google Scholar]
  45. Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G et al. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genomics 2016; 17:1–7 [View Article] [PubMed]
    [Google Scholar]
  46. Lespinet O, Wolf YI, Koonin EV, Aravind L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 2002; 12:1048–1059 [View Article] [PubMed]
    [Google Scholar]
  47. Towns J, Cockerill T, Dahan M, Foster I, Gaither K et al. XSEDE: accelerating scientific discovery. Comput Sci Eng 2014; 16:62–74 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006198
Loading
/content/journal/ijsem/10.1099/ijsem.0.006198
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error