Skip to content
1887

Abstract

YIM F302 was compared with N5 to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of YIM F302 showed high similarity (99.9 %) to that of N5. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus . A draft genomic comparison between the two strains revealed average nucleotide identity values of 96.8–97.9 % and a digital DNA–DNA hybridization estimate of 80.7±1.9 %, strongly indicating that the two strains represented a single species. Based on the combined phylogenetic, genomic and phenotypic characterization presented here, we propose as a later heterotypic synonym of N5.

Funding
This study was supported by the:
  • the National Natural Science Foundation of China (Award 42073077)
    • Principle Award Recipient: YuliWei
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006162
2023-11-07
2025-06-24
Loading full text...

Full text loading...

References

  1. Brooks BW, Murray RGE. Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981; 31:353–360 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Lakra P, Verma H, Talwar C, Singh DN, Singhvi N et al. Genome based reclassification of Deinococcus swuensis as a heterotypic synonym of Deinococcus radiopugnans. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  4. Hussain F, Khan IU, Habib N, Xian W-D, Hozzein WN et al. Deinococcus saudiensis sp. nov., isolated from desert. Int J Syst Evol Microbiol 2016; 66:5106–5111 [View Article] [PubMed]
    [Google Scholar]
  5. Cha S, Srinivasan S, Seo T, Kim MK. Deinococcus soli sp. nov., a gamma-radiation-resistant bacterium isolated from rice field soil. Curr Microbiol 2014; 68:777–783 [View Article] [PubMed]
    [Google Scholar]
  6. de Groot A, Chapon V, Servant P, Christen R, Saux M-L et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 2005; 55:2441–2446 [View Article] [PubMed]
    [Google Scholar]
  7. Im W-T, Jung H-M, Ten LN, Kim MK, Bora N et al. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008; 58:2348–2353 [View Article] [PubMed]
    [Google Scholar]
  8. Wang X-P, Li C-M, Yu Y, Li H-R, Du Z-J et al. Deinococcus arcticus sp. nov., isolated from Silene acaulis rhizosphere soil of the Arctic tundra. Int J Syst Evol Microbiol 2019; 69:3437–3442 [View Article]
    [Google Scholar]
  9. Battista JR. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 1997; 51:203–224 [View Article] [PubMed]
    [Google Scholar]
  10. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2016; 66:3761–3764
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  15. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  16. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142–148 [View Article] [PubMed]
    [Google Scholar]
  17. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  19. Sun J, Lu F, Luo Y, Bie L, Xu L et al. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 2023; 51:W397–W403 [View Article] [PubMed]
    [Google Scholar]
  20. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  21. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006162
Loading
/content/journal/ijsem/10.1099/ijsem.0.006162
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error