Skip to content
1887

Abstract

sp. DSM 11985 was isolated from geothermal soil but had not yet been classified at the species level. The strain produced guaiacol, which is of interest from the viewpoint of food spoilage in the food industry. 16S rRNA gene sequence analysis revealed that strain DSM 11985 was closely related (99.6 % similarity) to DSM 12489. However, strains of did not produce guaiacol; therefore, we performed the taxonomic characterization of strain DSM 11985. The results showed that strain DSM 11985 and strains of showed different phenotypic characteristics in biochemical/physiological tests including guaiacol production. Average nucleotide identity values between strain DSM 11985 and strain DSM 12489 were 95.4–95.9 %, and the DNA–DNA hybridization value using the Genome-to-Genome Distance Calculator between strains DSM 11985 and DSM 12489 was 65.5 %. These values showed that strain DSM 11985 was genetically closely related but separated from strains of . From the above results, a novel subspecies of , named subsp. subsp. nov. is proposed. The type strain is DSM 11985 (=FR-12=NBRC 113041).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006067
2023-10-03
2025-02-17
Loading full text...

Full text loading...

References

  1. Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 1992; 42:263–269 [View Article] [PubMed]
    [Google Scholar]
  2. Albuquerque L, Rainey FA, Chung AP, Sunna A, Nobre MF et al. Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of São Miguel in the Azores. Int J Syst Evol Microbiol 2000; 50 Pt 2:451–457 [View Article] [PubMed]
    [Google Scholar]
  3. Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat’eva TF, Tsaplina IA et al. Reclassification of “Sulfobacillus thermosulfidooxidans subsp. thermotolerans” strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 2005; 55:941–947 [View Article] [PubMed]
    [Google Scholar]
  4. Kim MG, Lee JC, Park DJ, Li WJ, Kim CJ. Alicyclobacillus tengchongensis sp. nov., a thermo-acidophilic bacterium isolated from hot spring soil. J Microbiol 2014; 52:884–889 [View Article] [PubMed]
    [Google Scholar]
  5. Watanabe M, Kojima H, Fukui M. Proposal of Effusibacillus lacus gen. nov., sp. nov., and reclassification of Alicyclobacillus pohliae as Effusibacillus pohliae comb. nov. and Alicyclobacillus consociatus as Effusibacillus consociatus comb. nov. Int J Syst Evol Microbiol 2014; 64:2770–2774 [View Article] [PubMed]
    [Google Scholar]
  6. Zhang B, Wu Y-F, Song J-L, Huang Z-S, Wang B-J et al. Alicyclobacillus fodiniaquatilis sp. nov., isolated from acid mine water. Int J Syst Bacteriol 2015; 65:4915–4920 [View Article]
    [Google Scholar]
  7. López G, Díaz-Cárdenas C, David Alzate J, Gonzalez LN, Shapiro N et al. Description of Alicyclobacillus montanus sp. nov., a mixotrophic bacterium isolated from acidic hot springs. Int J Syst Evol Microbiol 2018; 68:1608–1615 [View Article] [PubMed]
    [Google Scholar]
  8. Roth K, Rana YS, Daeschel D, Kovac J, Worobo R et al. Alicyclobacillus mali sp. nov., Alicyclobacillus suci sp. nov. and Alicyclobacillus fructus sp. nov., thermoacidophilic sporeforming bacteria isolated from fruit beverages. Int J Syst Evol Microbiol 2021; 71:005016 [View Article] [PubMed]
    [Google Scholar]
  9. Goto K, Mochida K, Asahara M, Suzuki M, Kasai H et al. Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess omega-alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 2003; 53:1537–1544 [View Article] [PubMed]
    [Google Scholar]
  10. Nakano C, Takahashi N, Tanaka N, Okada S. Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product. Int J Syst Evol Microbiol 2015; 65:716–722 [View Article] [PubMed]
    [Google Scholar]
  11. Goto K, Nishibori A, Wasada Y, Furuhata K, Fukuyama M et al. Identification of thermo-acidophilic bacteria isolated from the soil of several Japanese fruit orchards. Lett Appl Microbiol 2008; 46:289–294 [View Article] [PubMed]
    [Google Scholar]
  12. Witthuhn RC, van der Merwe E, Venter P, Cameron M. Guaiacol production from ferulic acid, vanillin and vanillic acid by Alicyclobacillus acidoterrestris. Int J Food Microbiol 2012; 157:113–117 [View Article] [PubMed]
    [Google Scholar]
  13. Goto K, Mochida K, Kato Y, Asahara M, Fujita R et al. Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov. Int J Syst Evol Microbiol 2007; 57:1276–1285 [View Article] [PubMed]
    [Google Scholar]
  14. Kato Y, Asahara M, Goto K, Kasai H, Yokota A. Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2008; 58:1134–1141 [View Article] [PubMed]
    [Google Scholar]
  15. Treismen R. Purification of plasmid DNA. In Sambrook J, Fritsch EF, Maniatis T. eds Molecular Cloning: A Laboratory Manual chapter 1, 2nd. edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989 pp 40–41
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  21. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article] [PubMed]
    [Google Scholar]
  24. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014; 24:1384–1395 [View Article] [PubMed]
    [Google Scholar]
  25. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article] [PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon SH, Ha S-M, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  31. Durak MZ, Churey JJ, Danyluk MD, Worobo RW. Identification and haplotype distribution of Alicyclobacillus spp. from different juices and beverages. Int J Food Microbiol 2010; 142:286–291 [View Article] [PubMed]
    [Google Scholar]
  32. Dekowska A, Niezgoda J, Sokolowska B. Genetic heterogeneity of Alicyclobacillus strains revealed by RFLP analysis of Vdc region and rpoB gene. BioMed Res Int 20189608756 [View Article]
    [Google Scholar]
  33. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes. Prokaryotic code (revision 2008). Int J Syst Evol Microbiol 2019S1–S111 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.006067
Loading
/content/journal/ijsem/10.1099/ijsem.0.006067
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error