Skip to content
1887

Abstract

Filamentous actinomycetes, designated SL13 and SL54, were isolated from pine litter and their taxonomic status resolved using a polyphasic approach. The isolates exhibit chemotaxonomic and morphological properties consistent with their classification in the family . They form extensively branched substrate mycelia bearing aerial hyphae that differentiate into straight chains of cylindrical spores. The whole-organism hydrolysates contain -diaminopimelic acid, glucose, mannose and ribose, the predominant isoprenologue is MK-9(H), the polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and glycophospholipids, and the major fatty acids are anteiso-C, iso-C, iso-C and anteiso-C. Phylogenetic trees based on 16S rRNA gene sequences and multilocus gene sequences of conserved housekeeping genes show that the isolates form a well-supported lineage that is most closely related to NBRC 115203. All of these strains form a well-defined clade in the multilocus sequence analysis tree together with DSM 46488, DSM 41836 and DSM 42083. Draft genomes assemblies of the isolates are rich in biosynthetic gene clusters predicted to produce novel specialized metabolites and stress-related genes which provide an insight into how they have adapted to the harsh conditions that prevail in pine litter. Phylogenomically, both isolates belong to the same lineage as the type strains of , , and ; these relationships are underpinned by high average amino acid identity, average nucleotide identity and genomic DNA–DNA hybridization values. These metrics confirm that isolates SL13 and SL54 belong to a novel species that is most closely related to NBRC 115203 and that these strains together with DSM 41836, DSM 42083 belong to the genus . Consequently, it is proposed that the isolates be recognized as a new species, comb. nov., with isolate SL54 (=DSM 111111=PCM3044) as the type strain, and that , and be transferred to the genus as comb. nov., comb. nov. and comb. nov. Emended descriptions are given for the genus , the family and for which was found to be a close relative of the isolates in the 16S rRNA gene sequence analyses. It is also proposed that be transferred to the genus as comb. nov based on its position in the MLSA and phylogenomic trees and associated genomic data.

Funding
This study was supported by the:
  • Uniwersytet Mikolaja Kopernika w Toruniu (Award 1207-B)
    • Principle Award Recipient: MagdalenaŚwiecimska
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005978
2023-07-24
2025-01-25
Loading full text...

Full text loading...

References

  1. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  2. Hayashi Sant’Anna F, Bach E, Porto RZ, Guella F, Hayashi Sant’Anna E et al. Genomic metrics made easy: what to do and where to go in the new era of bacterial taxonomy. Crit Rev Microbiol 2019; 45:182–200 [View Article] [PubMed]
    [Google Scholar]
  3. Sangal V, Goodfellow M, Blom J, Tan GYA, Klenk H-P et al. Revisiting the taxonomic status of the biomedically and industrially important genus Amycolatopsis, using a phylogenomic approach. Front Microbiol 2016; 9:2281 [View Article] [PubMed]
    [Google Scholar]
  4. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  5. Gtari M. Taxogenomic status of phylogenetically distant Frankia clusters warrants their elevation to the rank of genus: A description of Protofrankia gen. nov., Parafrankia gen. nov., and Pseudofrankia gen. nov. as three novel genera within the family Frankiaceae. Front Microbiol 2022; 13:1041425 [View Article]
    [Google Scholar]
  6. Madhaiyan M, Saravanan VS, See-Too W-S, Volpiano CG, Sant’Anna FH et al. Genomic and phylogenomic insights into the family Streptomycetaceae lead to the proposal of six novel genera. Int J Syst Evol Microbiol 2022; 72:005570 [View Article] [PubMed]
    [Google Scholar]
  7. Nouioui I, Sangal V. Advanced prokaryotic systematics: the modern face of an ancient science. New Microbes New Infect 2022; 49–50:101036 [View Article] [PubMed]
    [Google Scholar]
  8. Sangal V, Goodfellow M, Jones AL, Sutcliffe IC. A stable home for an equine pathogen: valid publication of the binomial Prescottella equi gen. nov., comb. nov., and reclassification of four rhodococcal species into the genus Prescottella. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  9. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article] [PubMed]
    [Google Scholar]
  10. Huang M-J, Rao MPN, Salam N, Xiao M, Huang H-Q et al. Allostreptomyces psammosilenae gen. nov., sp. nov., an endophytic actinobacterium isolated from the roots of Psammosilene tunicoides and emended description of the family Streptomycetaceae [Waksman and Henrici (1943)AL] emend. Rainey et al. 1997, emend. Kim et al. 2003, emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2017; 67:288–293 [View Article] [PubMed]
    [Google Scholar]
  11. Ōmura S, Takahashi Y, Iwai Y, Tanaka H. Kitasatosporia, a new genus of the order Actinomycetales. J Antibiot 1982; 35:1013–1019
    [Google Scholar]
  12. Zhang Z, Wang Y, Ruan J. A proposal to revive the genus Kitasatospora (Omura, Takahashi, Iwai, and Tanaka 1982). Int J Syst Bacteriol 1997; 47:1048–1054 [View Article] [PubMed]
    [Google Scholar]
  13. Kim SB, Lonsdale J, Seong CN, Goodfellow M. Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et AL. 1997. Antonie van Leeuwenhoek 2003; 83:107–116 [View Article] [PubMed]
    [Google Scholar]
  14. Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. The Actinobacteria, Part B New York: Springer; 2012 pp 1455–1767
    [Google Scholar]
  15. Kämpfer P. Family I. Streptomycetaceae Waksman and Henrici 1943, 339AL 656 emend. 657 Rainey, Ward-Rainey and Stackebrandt 1997, 486 emend. In Bergey’s Manual of Systematic Bacteriology vol 5 New York: Springer; 1943 pp 1446–1447
    [Google Scholar]
  16. Ping X, Takahashi Y, Seino A, Iwai Y, Ōmura S. Streptomyces scabrisporus sp. nov. Int J Syst Evol Microbiol 2004; 54:577–581 [View Article] [PubMed]
    [Google Scholar]
  17. Nagai A, Khan ST, Tamura T, Takagi M, Shin-Ya K. Streptomyces aomiensis sp. nov., isolated from a soil sample using the membrane-filter method. Int J Syst Evol Microbiol 2011; 61:947–950 [View Article] [PubMed]
    [Google Scholar]
  18. Ser H-L, Zainal N, Palanisamy UD, Goh B-H, Yin W-F et al. Streptomyces gilvigriseus sp. nov., a novel actinobacterium isolated from mangrove forest soil. Antonie van Leeuwenhoek 2015; 107:1369–1378 [View Article] [PubMed]
    [Google Scholar]
  19. Barbe V, Bouzon M, Mangenot S, Badet B, Poulain J et al. Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. J Bacteriol 2011; 193:5055–5056 [View Article] [PubMed]
    [Google Scholar]
  20. Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M et al. Thienamycin, a new.BETA.-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot 1979; 32:1–12 [View Article]
    [Google Scholar]
  21. Donald L, Pipite A, Subramani R, Owen J, Keyzers RA et al. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective. Microbiol Res 2022; 13:418–465 [View Article]
    [Google Scholar]
  22. Trzcińska-Wencel J, Wypij M, Rai M, Golińska P. Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry. Front Microbiol 2023; 141125685 [View Article] [PubMed]
    [Google Scholar]
  23. Li Y, Wang M, Sun Z-Z, Xie B-B. Comparative genomic insights into the taxonomic classification, diversity, and secondary metabolic potentials of Kitasatospora, a genus closely related to Streptomyces. Front Microbiol 2021; 12:683814 [View Article] [PubMed]
    [Google Scholar]
  24. Malik A, Kim YR, Kim SB. Genome mining of the genus Streptacidiphilus for biosynthetic and biodegradation potential. Genes 2020; 11:1166 [View Article] [PubMed]
    [Google Scholar]
  25. Golinska P, Dahm H, Goodfellow M. Streptacidiphilus toruniensis sp. nov., isolated from a pine forest soil. Antonie van Leeuwenhoek 2016; 109:1583–1591 [View Article] [PubMed]
    [Google Scholar]
  26. Świecimska M, Golińska P, Goodfellow M. Genome-based classification of Streptomyces pinistramenti sp. nov., a novel actinomycete isolated from a pine forest soil in Poland with a focus on its biotechnological and ecological properties. Antonie van Leeuwenhoek 2022; 115:783–800 [View Article] [PubMed]
    [Google Scholar]
  27. Kűster E, Williams ST. Selection of media for isolation of streptomycetes. Nature 1964; 202:928–929 [View Article] [PubMed]
    [Google Scholar]
  28. Kim BY, Zucchi TD, Fiedler HP, Goodfellow M. Streptomyces cocklensis sp. nov., a dioxamycin-producing actinomycete. Int J Syst Evol Microbiol 2012; 62:279–283 [View Article] [PubMed]
    [Google Scholar]
  29. Tatar D, Guven K, Spröer C, Klenk HP, Sahin N. Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern. Int J Syst Evol Microbiol 2014; 64:3126–3133 [View Article] [PubMed]
    [Google Scholar]
  30. Somphong A, Poengsungnoen V, Buaruang K, Suriyachadkun C, Sripreechasak P et al. Diversity of the culturable lichen-derived actinobacteria and the taxonomy of Streptomyces parmotrematis sp. nov. Antonie van Leeuwenhoek 2022; 115:911–920 [View Article] [PubMed]
    [Google Scholar]
  31. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  32. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  33. Collins MD, Goodfellow M, Minnikin DE, Alderson G. Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 1985; 58:77–86 [View Article] [PubMed]
    [Google Scholar]
  34. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  36. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  37. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriology 1988; 38:358–361 [View Article]
    [Google Scholar]
  38. Sasser MJ. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: Microbial ID Inc; 1990
    [Google Scholar]
  39. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [View Article] [PubMed]
    [Google Scholar]
  40. Busti E, Cavaletti L, Monciardini P, Schumann P, Rohde M et al. Catenulispora acidiphila gen. nov., sp. nov., a novel, mycelium-forming actinomycete, and proposal of Catenulisporaceae fam. nov. Int J Syst Evol Microbiol 2014; 56:1741–1746 [View Article] [PubMed]
    [Google Scholar]
  41. Harris JL. Modified method for fungal slide culture. J Clin Microbiol 1986; 9:460–461 [View Article] [PubMed]
    [Google Scholar]
  42. Kelly KL. Central notations for the revised ISCC-NBS color-name blocks. J Res Nat Bur Standards 1958; 61:427 [View Article]
    [Google Scholar]
  43. Kawato M, Shinobu R. On Streptomyces herbaricolor sp. nov., supplement: a simple technique for microscopical observation. Mem Osaka Univ Lib Arts Educ B Nat Sci 1959; 8:114–119
    [Google Scholar]
  44. O’Donnell AG, Falconer C, Goodfellow M, Ward AC, Williams E. Biosystematics and diversity amongst novel carboxydotrophic actinomycetes. Antonie van Leeuwenhoek 1993; 64:325–340 [View Article] [PubMed]
    [Google Scholar]
  45. Golinska P, Wang D, Goodfellow M. Nocardia aciditolerans sp. nov., isolated from a spruce forest soil. Antonie van Leeuwenhoek 2013; 103:1079–1088 [View Article] [PubMed]
    [Google Scholar]
  46. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  47. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  48. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  49. Tamura K, Stecher G, Kumar S. MEGA XI: Molecular Evolutionary Genetics Analysis version 1. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  50. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  51. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  52. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  53. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article] [PubMed]
    [Google Scholar]
  54. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  55. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:383–391 [View Article] [PubMed]
    [Google Scholar]
  56. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012; 7:e48053 [View Article] [PubMed]
    [Google Scholar]
  57. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994; 44:846–849 [View Article]
    [Google Scholar]
  58. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  59. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  60. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  61. Saintpierre-Bonaccio D, Amir H, Pineau R, Lemriss S, Goodfellow M. Streptomyces ferralitis sp. nov., a novel streptomycete isolated from a New-Caledonian ultramafic soil. Int J Syst Evol Microbiol 2004; 54:2061–2065 [View Article] [PubMed]
    [Google Scholar]
  62. Guo X, Zhang L, Li X, Gao Y, Ruan J et al. Streptomyces rubrisoli sp. nov., neutrotolerant acidophilic actinomycetes isolated from red soil. Int J Syst Evol Microbiol 2015; 65:3103–3108 [View Article] [PubMed]
    [Google Scholar]
  63. Carro L, Spröer C, Alonso P, Trujillo ME. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 2012; 35:73–80 [View Article] [PubMed]
    [Google Scholar]
  64. Chun J. eds Phylogenetic Editor (PHYDIT) 1999
    [Google Scholar]
  65. Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR et al. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie van Leeuwenhoek 2017; 110:563–583 [View Article] [PubMed]
    [Google Scholar]
  66. Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B et al. Phylogenetic study of the species within the family Streptomycetaceae. Antonie van Leeuwenhoek 2012; 101:73–104 [View Article] [PubMed]
    [Google Scholar]
  67. Rong X, Huang Y. Multi-locus sequence analysis: taking prokaryotic systemetics to the next level. Meth Microbiol 2014; 41:221–251
    [Google Scholar]
  68. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A. Assembling genomes and mini-metagenomes from highly chimeric reads. In In: Research in Computational Molecular Biology vol 7821 Springer, Berlin, Heidelberg: 2013 pp 158–170 [View Article] [PubMed]
    [Google Scholar]
  69. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  70. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:218 [View Article] [PubMed]
    [Google Scholar]
  71. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  72. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
  73. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  74. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article] [PubMed]
    [Google Scholar]
  75. Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun 2020; 11:2500 [View Article] [PubMed]
    [Google Scholar]
  76. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  77. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article] [PubMed]
    [Google Scholar]
  78. Moose A. POCP Calculation for Two Genomes 2017 [View Article]
    [Google Scholar]
  79. Pantiukh K, Grouzdev D. POCP-Matrix Calculation for a Number of Genomes 2017 [View Article]
    [Google Scholar]
  80. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  81. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  82. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  83. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and Archaea based on a standard genome relatedness index. mBio 2020; 11:e02475
    [Google Scholar]
  84. Wirth JS, Whitman WB. Phylogenomic analyses of a clade within the roseobacter group suggest taxonomic reassignments of species of the genera Aestuariivita, Citreicella, Loktanella, Nautella, Pelagibaca, Ruegeria, Thalassobius, Thiobacimonas and Tropicibacter, and the proposal of six novel genera. Int J Syst Evol Microbiol 2018; 68:2393–2411 [View Article] [PubMed]
    [Google Scholar]
  85. Hu S, Li K, Zhang Y, Wang Y, Fu L et al. New insights into the threshold values of multi-locus sequence analysis, average nucleotide identity and digital DNA-DNA hybridization in delineating Streptomyces species. Front Microbiol 2022; 13:910277 [View Article] [PubMed]
    [Google Scholar]
  86. Palmer M, Steenkamp ET, Blom J, Hedlund BP, Venter SN. All ANIs are not created equal: implications for prokaryotic species boundaries and integration of ANIs into polyphasic taxonomy. Int J Syst Evol Microbiol 2020; 70:2937–2948 [View Article] [PubMed]
    [Google Scholar]
  87. Versalovic J, Schneider M, DeBruijn F, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  88. Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E et al. The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 2010; 4:1265–1281 [View Article] [PubMed]
    [Google Scholar]
  89. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  90. Chen X, Zhu X, Ding Y, Shen Y. Antifungal activity of tautomycin and related compounds against Sclerotinia sclerotiorum. J Antibiot 2011; 64:563–569 [View Article] [PubMed]
    [Google Scholar]
  91. Siupka P, Piński A, Babicka D, Piotrowska-Seget Z. Genome mining revealed a high biosynthetic potential for antifungal Streptomyces sp. S-2 isolated from black soot. Int J Mol Sci 2020; 21:2558 [View Article] [PubMed]
    [Google Scholar]
  92. Luo Y, Huang H, Liang J, Wang M, Lu L et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 2013; 4:2894 [View Article] [PubMed]
    [Google Scholar]
  93. Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC et al. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 2007; 51:64–72 [View Article] [PubMed]
    [Google Scholar]
  94. Kim YJ, Moon MH, Song JY, Smith CP, Hong S-K et al. Acidic pH shock induces the expressions of a wide range of stress-response genes. BMC Genomics 2008; 9:604 [View Article] [PubMed]
    [Google Scholar]
  95. Goodfellow M, Williams ST. Ecology of actinomycetes. Annu Rev Microbiol 1983; 37:189–216 [View Article] [PubMed]
    [Google Scholar]
  96. Williams ST, Davies FL, Mayfield CI, Khan MR. Studies on the ecology of actinomycetes in soil II. The pH requirements of streptomycetes from two acid soils. Soil Biology and Biochemistry 1971; 3:187–195 [View Article]
    [Google Scholar]
  97. Peng T, Ma L, Feng X, Tao J, Nan M et al. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS One 2017; 12:e0178008 [View Article] [PubMed]
    [Google Scholar]
  98. Nguyen N-L, Yu W-J, Gwak J-H, Kim S-J, Park S-J et al. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front Microbiol 2018; 9:1982 [View Article] [PubMed]
    [Google Scholar]
  99. Tamreihao K, Nimaichand S, Ningthoujam DS. Use of acidophilic or acidotolerant actinobacteria for sustainable agricultural production in acidic soils. In Egamberdieva D, Birkeland NK, Panosyan H, Li WJ. eds Extremophiles in Eurasian Ecosystems vol 8 Singapore: Springer; 2018 pp 453–464 [View Article]
    [Google Scholar]
  100. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article] [PubMed]
    [Google Scholar]
  101. Murray PR, Boron EJ, Pfaller MA, Tenover FC, Yolken RH. Manual of Clinical Microbiology. 7th edn Washington, DC: ASM Press; 1999
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005978
Loading
/content/journal/ijsem/10.1099/ijsem.0.005978
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error