Skip to content
1887

Abstract

A novel member of class was isolated from marine sediment of the South China Sea. Cells of strain LMO-2 were Gram-stain negative, greyish in colour, motile, with a single lateral flagellum and short rod in shape with a slight curve. Strain LMO-2 was positive for oxidase and negative for catalase. The bacterium grew aerobically at 10–40 °C (optimum, 25–30 °C), pH 5.5–10.0 (optimum, pH 7.0) and 0–9 % NaCl (w/v; optimum, 2–3 %). Phylogenetic analysis of the 16S rRNA gene sequence and phylogenomic analysis of the whole genome sequence indicated that strain LMO-2 represents a new genus and a new species within the family , class , phylum . Comparisons of the 16S rRNA gene sequences of strain LMO-2 showed 94.8 % similarity to its closest relative. The genome size is ~3.45 Mbp with a DNA G+C content of 58.17 mol%. The strain possesses potential capability for the degradation of complex organic matter, i.e. fatty acid and benzoate. The predominant cellular fatty acids (>10 %) were C and C ω7c 11-methyl. The sole respiratory quinone was ubiquinone-10. The major identified polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phospholipid. Based on the polyphasic taxonomic data, strain LMO-2 represents a novel genus and a novel species for which the name gen. nov., sp. nov., was proposed in the family . The type strain is LMO-2 (=CGMCC 1.19273=JCM 34934).

Funding
This study was supported by the:
  • National Key Research and Development Program of China (Award 2022YFC2804100)
    • Principle Award Recipient: FengpingWang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005972
2023-07-24
2025-03-15
Loading full text...

Full text loading...

References

  1. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article] [PubMed]
    [Google Scholar]
  2. Mu Y, Zhou L, Zeng X-C, Liu L, Pan Y et al. Arsenicitalea aurantiaca gen. nov., sp. nov., a new member of the family Hyphomicrobiaceae, isolated from high-arsenic sediment. Int J Syst Evol Microbiol 2016; 66:5478–5484 [View Article]
    [Google Scholar]
  3. Li Q, Xu Y, Liu K, Cai L, Fu Y et al. Pelagibacterium nitratireducens sp.nov., a marine Alphaproteobacterium isolated from the East China Sea. Curr Microbiol 2013; 66:450–455 [View Article]
    [Google Scholar]
  4. Xu X-W, Huo Y-Y, Wang C-S, Oren A, Cui H-L et al. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 2011; 61:1817–1822 [View Article] [PubMed]
    [Google Scholar]
  5. Verma M, Kumar M, Dadhwal M, Kaur J, Lal R. Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2009; 59:795–799 [View Article] [PubMed]
    [Google Scholar]
  6. Kumar M, Verma M, Lal R. Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 2008; 58:861–865 [View Article] [PubMed]
    [Google Scholar]
  7. Dua A, Malhotra J, Saxena A, Khan F, Lal R. Devosia lucknowensis sp. nov., a bacterium isolated from hexachlorocyclohexane (HCH) contaminated pond soil. J Microbiol 2013; 51:689–694 [View Article] [PubMed]
    [Google Scholar]
  8. Chen Y, Zhu S, Lin D, Wang X, Yang J et al. Devosia naphthalenivorans sp. nov., isolated from East Pacific Ocean sediment. Int J Syst Evol Microbiol 2019; 69:1974–1979 [View Article] [PubMed]
    [Google Scholar]
  9. Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications 1992 pp 3352–3378 [View Article]
    [Google Scholar]
  10. Ishaq SE, Ahmad T, Hou J, Liang L, Wang Y et al. Draft genome sequences of four bacterial strains isolated from sediment of the South China Sea. Microbiol Resour Announc 2022; 11:e0019122 [View Article] [PubMed]
    [Google Scholar]
  11. Liang L, Sun Y, Dong Y, Ahmad T, Chen Y et al. Methanococcoides orientis sp. nov., a methylotrophic methanogen isolated from sediment of the East China Sea. Int J Syst Evol Microbiol 2022; 72: [View Article]
    [Google Scholar]
  12. Wu X, Spencer S, Gushgari-Doyle S, Yee MO, Voriskova J et al. Culturing of “Unculturable” subsurface microbes: natural organic carbon source fuels the growth of diverse and distinct bacteria from groundwater. Front Microbiol 2020; 11:3171 [View Article]
    [Google Scholar]
  13. Wu X, Wu L, Liu Y, Zhang P, Li Q et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front Microbiol 2018; 9:1234 [View Article]
    [Google Scholar]
  14. Cody WL, Wilson JW, Hendrixson DR, McIver KS, Hagman KE et al. Skim milk enhances the preservation of thawed -80 degrees C bacterial stocks. J Microbiol Methods 2008; 75:135–138 [View Article] [PubMed]
    [Google Scholar]
  15. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article] [PubMed]
    [Google Scholar]
  16. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  18. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  25. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2021; 49:D10–D17 [View Article]
    [Google Scholar]
  26. Jia Y-Y, Sun C, Pan J, Zhang W-Y, Zhang X-Q et al. Devosia pacifica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:2637–2641 [View Article] [PubMed]
    [Google Scholar]
  27. Geng S, Pan X-C, Mei R, Wang Y-N, Sun J-Q et al. Paradevosia shaoguanensis gen. nov., sp. nov., isolated from a coking wastewater. Curr Microbiol 2015; 70:110–118 [View Article] [PubMed]
    [Google Scholar]
  28. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [View Article]
    [Google Scholar]
  29. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  33. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJe1900v1 2016; 4 [View Article]
    [Google Scholar]
  34. Wang H-C, Li K, Susko E, Roger AJ. A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny. BMC Evol Biol 2008; 8:1–13 [View Article] [PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  36. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35:4162–4164 [View Article] [PubMed]
    [Google Scholar]
  37. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  38. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  39. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. In Gene Prediction: Methods and Protocols vol 2019 New York, NY: Springer; pp 227–245 [View Article]
    [Google Scholar]
  40. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article] [PubMed]
    [Google Scholar]
  41. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  42. Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci 2022; 31:47–53 [View Article] [PubMed]
    [Google Scholar]
  43. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–9 [View Article] [PubMed]
    [Google Scholar]
  44. Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 2020; 48:8883–8900 [View Article] [PubMed]
    [Google Scholar]
  45. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  46. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  47. Matsuoka H, Hirooka K, Fujita Y. Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation. J Biol Chem 2007; 282:5180–5194 [View Article] [PubMed]
    [Google Scholar]
  48. Kowalchuk GA, Hartnett GB, Benson A, Houghton JE, Ngai K-L et al. Contrasting patterns of evolutionary divergence within the Acinetobacter calcoaceticus pca operon. Gene 1994; 146:23–30 [View Article]
    [Google Scholar]
  49. Yoshida K, Komae K. A rice family 9 glycoside hydrolase isozyme with broad substrate specificity for hemicelluloses in type II cell walls. Plant Cell Physiol 2006; 47:1541–1554 [View Article]
    [Google Scholar]
  50. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI inc; 1990
    [Google Scholar]
  51. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  52. Kates M. Techniques of Lipidology. Isolation, Analysis and Identification of Lipids. 2. Rev Amsterdam; New York, NY, U.S.A: Elsevier Science Pub. Co; 1986
    [Google Scholar]
  53. Fukushima RS, Weimer PJ, Kunz DA. Photocatalytic interaction of resazurin N -oxide with cysteine optimizes preparation of anaerobic culture media. Anaerobe 2002; 8:29–34 [View Article]
    [Google Scholar]
  54. Wang Y-X, Huang F-Q, Nogi Y, Pang S-J, Wang P-K et al. Youhaiella tibetensis gen. nov., sp. nov., isolated from subsurface sediment. Int J Syst Evol Microbiol 2015; 65:2048–2055 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005972
Loading
/content/journal/ijsem/10.1099/ijsem.0.005972
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error