1887

Abstract

Bradyrhizobia are particularly abundant in Australia, where they nodulate native legumes growing in the acidic and seasonally dry soils that predominate in these environments. They are essential to Australian ecosystems by helping legumes to compensate for nutrient deficiencies and the low fertility of Australian soils. During a survey of Australian native rhizobial communities in 1994–1995, several genospecies were identified, among which genospecies B appeared to be present in various edaphic and climatic conditions and associate with a large range of leguminous hosts across the whole continent. We took advantage of the recent sequencing of the genome of strain BDV5040, representative of genospecies B, to re-evaluate the taxonomic status of this lineage. We further characterized strain BDV5040 based on morpho-physiological traits and determined its phylogenetic relationships with the type strains of all currently described species using both small subunit (SSU) rRNA gene and complete genome sequences. The digital DNA–DNA hybridization relatedness with any type strain was less than 35 % and both SSU rRNA gene and genome phylogenies confirmed the initial observation that this strain does not belong to any formerly described species within the genus . All data thus support the description of the novel species sp. nov. for which the type strain is BDV5040 (=CFBP 9110=LMG 32898), isolated from a nodule of in Ben Boyd National Park in New South Wales, Australia.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005971
2023-07-26
2024-06-19
Loading full text...

Full text loading...

References

  1. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN et al. The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130164 [View Article] [PubMed]
    [Google Scholar]
  2. Taylor BN, Simms EL, Komatsu KJ. More than a functional group: diversity within the legume–rhizobia mutualism and its relationship with ecosystem function. Diversity 2020; 12:50 [View Article]
    [Google Scholar]
  3. Doyle JJ, Luckow MA. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 2003; 131:900–910 [View Article] [PubMed]
    [Google Scholar]
  4. Andrella GC, Atahuachi Burgos M, Bagnatori Sartori ÂL, Balan A, Bandyopadhyay S et al. The World Checklist of Vascular Plants (WCVP): Fabaceae. Royal Botanic Gardens, Kew. Checklist dataset. Available https://doi.org/10.15468/mvhaj3 Accessed 23 Mar 2022
  5. Sprent JI, Ardley J, James EK. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 2017; 215:40–56 [View Article] [PubMed]
    [Google Scholar]
  6. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [View Article] [PubMed]
    [Google Scholar]
  7. OECD-FAO OECD-FAO Agricultural Outlook 2021-2030 Paris: OECD Publishing; 2021 [View Article]
    [Google Scholar]
  8. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ et al. A global atlas of the dominant bacteria found in soil. Science 2018; 359:320–325 [View Article] [PubMed]
    [Google Scholar]
  9. VanInsberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ et al. Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J 2015; 9:2435–2441 [View Article] [PubMed]
    [Google Scholar]
  10. Parker MA. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia. Microb Ecol 2015; 69:630–640 [View Article] [PubMed]
    [Google Scholar]
  11. Andrews M, Andrews ME. Specificity in Legume-Rhizobia symbioses. Int J Mol Sci 2017; 18:705 [View Article] [PubMed]
    [Google Scholar]
  12. Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S et al. Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes 2018; 9:321 [View Article] [PubMed]
    [Google Scholar]
  13. Trinick MJ. Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 1973; 244:459–460 [View Article]
    [Google Scholar]
  14. Trinick MJ, Hadobas PA. Biology of the Parasponia-Bradyrhizobium symbiosis. Plant Soil 1988; 110:177–185 [View Article]
    [Google Scholar]
  15. Okazaki S, Tittabutr P, Teulet A, Thouin J, Fardoux J et al. Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. ISME J 2016; 10:64–74 [View Article] [PubMed]
    [Google Scholar]
  16. Okazaki S, Kaneko T, Sato S, Saeki K. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc Natl Acad Sci U S A 2013; 110:17131–17136 [View Article] [PubMed]
    [Google Scholar]
  17. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 2007; 316:1307–1312 [View Article] [PubMed]
    [Google Scholar]
  18. Hungria M, Menna P, Marçon Delamuta JR. Bradyrhizobium, the Ancestor of All Rhizobia: Phylogeny of Housekeeping and Nitrogen-Fixation Genes. In de Bruijn FJ. eds Biological Nitrogen Fixation Hoboken, NJ, USA: John Wiley & Sons, Inc; 2015 pp 191–202 [View Article]
    [Google Scholar]
  19. Lafay B, Burdon JJ. Molecular diversity of rhizobia occurring on native shrubby legumes in southeastern australia. Appl Environ Microbiol 1998; 64:3989–3997 [View Article] [PubMed]
    [Google Scholar]
  20. Lafay B, Burdon JJ. Small-subunit rRNA genotyping of rhizobia nodulating Australian Acacia spp. Appl Environ Microbiol 2001; 67:396–402 [View Article] [PubMed]
    [Google Scholar]
  21. Lafay B, Burdon JJ. Molecular diversity of rhizobia nodulating the invasive legume Cytisus scoparius in Australia. J Appl Microbiol 2006; 100:1228–1238 [View Article] [PubMed]
    [Google Scholar]
  22. Lafay B, Burdon JJ. Molecular diversity of legume root-nodule bacteria in Kakadu National Park, Northern Territory, Australia. PLoS One 2007; 2:e277 [View Article] [PubMed]
    [Google Scholar]
  23. Stępkowski T, Watkin E, McInnes A, Gurda D, Gracz J et al. Distinct Bradyrhizobium communities nodulate legumes native to temperate and tropical monsoon Australia. Mol Phylogenet Evol 2012; 63:265–277 [View Article] [PubMed]
    [Google Scholar]
  24. Oger-Desfeux C, Briolay J, Oger PM, Lafay B. Complete Genome Sequence of Bradyrhizobium sp. Strain BDV5040, Representative of Widespread Genospecies B in Australia. Microbiol Resour Announc 2021; 10:e01326-20 [View Article] [PubMed]
    [Google Scholar]
  25. Vincent JM. A Manual for the Practical Study of Root-Nodule Bacteria. International Biological Programme Handbook No. 15 Oxford and Edinburgh: Blackwell Scientific Publications; 1970
    [Google Scholar]
  26. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  27. Gouy M, Tannier E, Comte N, Parsons DP. Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. Methods Mol Biol 2021; 2231:241–260 [View Article] [PubMed]
    [Google Scholar]
  28. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011; 7:539 [View Article] [PubMed]
    [Google Scholar]
  29. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  30. Abadi S, Azouri D, Pupko T, Mayrose I. Model selection may not be a mandatory step for phylogeny reconstruction. Nat Commun 2019; 10:934 [View Article] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  33. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  35. Avontuur JR, Palmer M, Beukes CW, Chan WY, Coetzee MPA et al. Genome-informed Bradyrhizobium taxonomy: where to from here?. Syst Appl Microbiol 2019; 42:427–439 [View Article] [PubMed]
    [Google Scholar]
  36. Ormeño-Orrillo E, Martínez-Romero E. A genomotaxonomy view of the Bradyrhizobium genus. Front Microbiol 2019; 10:1334 [View Article]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005971
Loading
/content/journal/ijsem/10.1099/ijsem.0.005971
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error