1887

Abstract

During our studies on spoilage microbiomes of modified atmosphere packaged broiler meat, we isolated three strains (PNs007, STAA11 and STAA25) of unknown identity. In this present polyphasic taxonomy study, including genome-based analyses, we discovered that these isolates represent two novel species belonging to the genus . In all phylogenetic analyses, PNs007 was positioned very close to but both the average nucleotide identity (ANI; 89.5 %) and digital DNA–DNA hybridization (dDDH; 38.3 %) values distinguished it as a novel vagococcal species. STAA11 and STAA25 were genetically highly similar (16S rRNA, ANI and dDDH 100 %). The phylogenetic position of STAA11 was adjacent to but out of the cluster containing , and PNs007. According to the ANI (76.2–76.4 %) and dDDH (<22.6 %) values it also represented a novel vagococcal species. Phenotypic characteristics and chemotaxonomic properties of both novel species were typical for vagococci and they contained C (25.5–30.1 %) and C ω9 (67.3–73.0 %) as the major cellular fatty acids. The streptomycin-resistant genotype of STAA11 and STAA25 allowing the growth on streptomycin thallous acetate actidione medium was considered to result from a modification in codon 104 of the gene leading to P104A substitution. The ability of STAA11 and STAA25 to produce ammonia from arginine separated them from PNs007, which did not show arginine deiminase activity. We propose the names sp. nov. (type strain PNs007=DSM 115185=CCUG 76696) and sp. nov. (type strain STAA11=DSM 115183=CCUG 76697) for these novel species.

Funding
This study was supported by the:
  • Novo Nordisk Fonden (Award NNF20OC0061239)
    • Principle Award Recipient: JohannaBjörkroth
  • Academy of Finland (Award 307855)
    • Principle Award Recipient: JohannaBjörkroth
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005963
2023-07-18
2024-12-05
Loading full text...

Full text loading...

References

  1. Collins MD, Ash C, Farrow JA, Wallbanks S, Williams AM. 16S ribosomal ribonucleic acid sequence analyses of lactococci and related taxa. Description of Vagococcus fluvialis gen. nov., sp. nov. J Appl Bacteriol 1989; 67:453–460 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Shewmaker PL, Whitney AM, Gulvik CA, Humrighouse BW, Gartin J et al. Vagococcus bubulae sp. nov., isolated from ground beef, and Vagococcus vulneris sp. nov., isolated from a human foot wound. Int J Syst Evol Microbiol 2019; 69:2268–2276 [View Article] [PubMed]
    [Google Scholar]
  4. Wallbanks S, Martinez-Murcia AJ, Fryer JL, Phillips BA, Collins MD. 16S rRNA sequence determination for members of the genus Carnobacterium and related lactic acid bacteria and description of Vagococcus salmoninarum sp. nov. Int J Syst Bacteriol 1990; 40:224–230 [View Article] [PubMed]
    [Google Scholar]
  5. Lawson PA, Foster G, Falsen E, Ohlén M, Collins MD. Vagococcus lutrae sp. nov., isolated from the common otter (Lutra lutra). Int J Syst Bacteriol 1999; 49 Pt 3:1251–1254 [View Article] [PubMed]
    [Google Scholar]
  6. Hoyles L, Lawson PA, Foster G, Falsen E, Ohlén M et al. Vagococcus fessus sp. nov., isolated from a seal and a harbour porpoise. Int J Syst Evol Microbiol 2000; 50 Pt 3:1151–1154 [View Article] [PubMed]
    [Google Scholar]
  7. Killer J, Švec P, Sedláček I, Černohlávková J, Benada O et al. Vagococcus entomophilus sp. nov., from the digestive tract of a wasp (Vespula vulgaris). Int J Syst Evol Microbiol 2014; 64:731–737 [View Article] [PubMed]
    [Google Scholar]
  8. Tak EJ, Kim HS, Lee J-Y, Kang W, Hyun D-W et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 2017; 67:3398–3402 [View Article] [PubMed]
    [Google Scholar]
  9. Ge Y, Yang J, Lai X-H, Zhang G, Jin D et al. Vagococcus xieshaowenii sp. nov., isolated from snow finch (Montifringilla taczanowskii) cloacal content. Int J Syst Evol Microbiol 2020; 70:2493–2498 [View Article] [PubMed]
    [Google Scholar]
  10. Lawson PA, Falsen E, Cotta MA, Whitehead TR. Vagococcus elongatus sp. nov., isolated from a swine-manure storage pit. Int J Syst Evol Microbiol 2007; 57:751–754 [View Article] [PubMed]
    [Google Scholar]
  11. Sundararaman A, Srinivasan S, Lee S-S. Vagococcus humatus sp. nov., isolated from soil beneath a decomposing pig carcass. Int J Syst Evol Microbiol 2017; 67:330–335 [View Article] [PubMed]
    [Google Scholar]
  12. Ge Y, Jin D, Lai X-H, Yang J, Lu S et al. Vagococcus zengguangii sp. nov., isolated from yak faeces. J Microbiol 2021; 59:1–9 [View Article] [PubMed]
    [Google Scholar]
  13. Shewmaker PL, Steigerwalt AG, Morey RE, Carvalho M da G, Elliott JA et al. Vagococcus carniphilus sp. nov., isolated from ground beef. Int J Syst Evol Microbiol 2004; 54:1505–1510 [View Article] [PubMed]
    [Google Scholar]
  14. Jaffrès E, Prévost H, Rossero A, Joffraud J-J, Dousset X. Vagococcus penaei sp. nov., isolated from spoilage microbiota of cooked shrimp (Penaeus vannamei). Int J Syst Evol Microbiol 2010; 60:2159–2164 [View Article] [PubMed]
    [Google Scholar]
  15. Wullschleger S, Jans C, Seifert C, Baumgartner S, Lacroix C et al. Vagococcus teuberi sp. nov., isolated from the Malian artisanal sour milk fènè. Syst Appl Microbiol 2018; 41:65–72 [View Article] [PubMed]
    [Google Scholar]
  16. Wu Y-C, Lin S-T, Guu J-R, Tamura T, Mori K et al. Vagococcus silagei sp. nov., isolated from brewer’s grain used to make silage in Taiwan. Int J Syst Evol Microbiol 2020; 70:1953–1960 [View Article] [PubMed]
    [Google Scholar]
  17. Wang L, Cui Y-S, Kwon CS, Lee S-T, Lee J-S et al. Vagococcus acidifermentans sp. nov., isolated from an acidogenic fermentation bioreactor. Int J Syst Evol Microbiol 2011; 61:1123–1126 [View Article] [PubMed]
    [Google Scholar]
  18. Hyun D-W, Tak EJ, Kim PS, Bae J-W. Description of Vagococcus coleopterorum sp. nov., isolated from the intestine of the diving beetle, Cybister lewisianus, and Vagococcus hydrophili sp. nov., isolated from the intestine of the dark diving beetle, Hydrophilus acuminatus, and emended description of the genus Vagococcus. J Microbiol 2021; 59:132–141 [View Article] [PubMed]
    [Google Scholar]
  19. Kim S-M, Byeon Y-S, Yang HL, Kim IS, Lee SD. Vagococcus allomyrinae sp. nov. and Enterococcus larvae sp. nov., isolated from larvae of Allomyrina dichotoma. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  20. Jadhav KP, Pai PG. A rare infective endocarditis caused by Vagococcus fluvialis. J Cardiol Cases 2019; 20:129–131 [View Article] [PubMed]
    [Google Scholar]
  21. Altintas I, Andrews V, Larsen MV. First reported human bloodstream infection with Vagococcus lutrae. New Microbes New Infect 2020; 34:100649 [View Article] [PubMed]
    [Google Scholar]
  22. Matsuo T, Mori N, Kawai F, Sakurai A, Toyoda M et al. Vagococcus fluvialis as a causative pathogen of bloodstream and decubitus ulcer infection: case report and systematic review of the literature. J Infect Chemother 2021; 27:359–363 [View Article] [PubMed]
    [Google Scholar]
  23. Standish I, Erickson S, Leis E, Baumgartner W, Loch T et al. Vagococcus salmoninarum I-A chronic coldwater streptococcosis in broodstock brook trout (Salvelinus fontinalis) in Wisconsin, USA. J Fish Dis 2020; 43:305–316 [View Article] [PubMed]
    [Google Scholar]
  24. Sorroza L, Padilla D, Acosta F, Román L, Grasso V et al. Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Vet Microbiol 2012; 155:369–373 [View Article] [PubMed]
    [Google Scholar]
  25. Román L, Acosta F, Padilla D, El Aamri F, Bravo J et al. The in vitro immunomodulatory effect of extracellular products (ECPs) of Vagococcus fluvialis L21 on European sea bass (Dicentrarchus labrax) leucocytes. Fish Shellfish Immunol 2015; 42:517–521 [View Article] [PubMed]
    [Google Scholar]
  26. Elliker PR, Anderson AW, Hannesson G. An agar culture medium for lactic acid streptococci and lactobacilli. J Dairy Sci 1956; 39:1611–1612 [View Article]
    [Google Scholar]
  27. Rahkila R, De Bruyne K, Johansson P, Vandamme P, Björkroth J. Reclassification of Leuconostoc gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum comb. nov., description of Leuconostoc gelidum subsp. aenigmaticum subsp. nov., designation of Leuconostoc gelidum subsp. gelidum subsp. nov. and emended description of Leuconostoc gelidum. Int J Syst Evol Microbiol 2014; 64:1290–1295 [View Article] [PubMed]
    [Google Scholar]
  28. Nieminen TT, Dalgaard P, Björkroth J. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork. Int J Food Microbiol 2016; 218:86–95 [View Article] [PubMed]
    [Google Scholar]
  29. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  30. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 2016; 44:W232–5 [View Article] [PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  32. Swofford D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4.0b10 Sinauer Associates; 2002 Sunderland, MA: [View Article] [PubMed]
    [Google Scholar]
  33. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  35. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  37. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  38. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article] [PubMed]
    [Google Scholar]
  39. Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas. Front Microbiol 2018; 9:771 [View Article] [PubMed]
    [Google Scholar]
  40. Bover-Cid S, Holzapfel WH. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol 1999; 53:33–41 [View Article] [PubMed]
    [Google Scholar]
  41. Gram L, Trolle G, Huss HH. Detection of specific spoilage bacteria from fish stored at low (0°C) and high (20°C) temperatures. Int J Food Microbiol 1987; 4:65–72 [View Article]
    [Google Scholar]
  42. Calliauw F, Horemans B, Broekaert K, Michiels C, Heyndrickx M. Spoilage potential of Vagococcus salmoninarum in preservative-free, MAP-stored brown shrimp and differentiation from Brochothrix thermosphacta on streptomycin thallous acetate actidione agar. J Appl Microbiol 2016; 120:1302–1312 [View Article] [PubMed]
    [Google Scholar]
  43. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article] [PubMed]
    [Google Scholar]
  44. Kuykendall LD, Roy MA, O’neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005963
Loading
/content/journal/ijsem/10.1099/ijsem.0.005963
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error