1887

Abstract

A Gram-stain-negative, non-motile by gliding and moderately halophilic rod-shaped bacterium HN-2-9-2 was isolated from seawater in Tongyeong, Republic of Korea. The strain grew at concentrations of 0.5‒7 % (w/v) NaCl, at pH 5.5‒8.5 and in a temperature range of 18‒45 °C. HN-2-9-2 shared the highest 16S rRNA gene sequence percentage with BH206 (98.2 %). The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA–DNA hybridisation (dDDH) values between HN-2-9-2 and the BH206 were 76.0 %, 81.9 % and 19.7 %, respectively. The genome comprised 3 509 958 bp with a DNA G+C content of 43.0%. HN-2-9-2 contained MK-6 as the sole menaquinone. The predominant fatty acids were iso-C, anteiso-C, iso-C 3-OH, iso-C, iso-CG and summed feature 9, comprising iso-Cω6/C 10-methyl. The polar lipids contained phosphatidylethanolamine, one unidentified phospholipid, two unidentified aminolipids, an unidentified glycolipid and six unidentified lipids. The polyphasic taxonomic properties indicate that the strain represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is HN-2-9-2 (=KCTC 82934=NBRC 115920).

Funding
This study was supported by the:
  • Ministry of Trade, Industry and Energy (Award 20015807)
    • Principle Award Recipient: Sang-JaeLee
  • National Institute of Biological Resources (Award NIBR202102109)
    • Principle Award Recipient: Won-JaeChi
  • National Research Foundation (NRF) (Award NRF-2020R1F1A1076624)
    • Principle Award Recipient: Sang-JaeLee
  • Ministry of Oceans and Fisheries (Award KIMST-20210646)
    • Principle Award Recipient: Sang-JaeLee
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005955
2023-07-12
2024-11-09
Loading full text...

Full text loading...

References

  1. Lim J-M, Jeon CO, Lee SS, Park D-J, Xu L-H et al. Reclassification of Salegentibacter catena Ying et al. 2007 as Salinimicrobium catena gen. nov., comb. nov. and description of Salinimicrobium xinjiangense sp. nov., a halophilic bacterium isolated from Xinjiang province in China. Int J Syst Evol Microbiol 2008; 58:438–442 [View Article] [PubMed]
    [Google Scholar]
  2. Ying J-Y, Liu Z-P, Wang B-J, Dai X, Yang S-S et al. Salegentibacter catena sp. nov., isolated from sediment of the South China Sea, and emended description of the genus Salegentibacter. Int J Syst Evol Microbiol 2007; 57:219–222 [View Article] [PubMed]
    [Google Scholar]
  3. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  4. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  5. Zhang H, Chang YQ, Zheng WS, Chen GJ, Du ZJ. Salinimicrobium flavum sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:4083–4088 [View Article] [PubMed]
    [Google Scholar]
  6. Lee S-Y, Park S, Oh T-K, Yoon J-H. Salinimicrobium gaetbulicola sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2012; 62:1027–1031 [View Article] [PubMed]
    [Google Scholar]
  7. Nedashkovskaya OI, Vancanneyt M, Kim SB, Han J, Zhukova NV et al. Salinimicrobium marinum sp. nov., a halophilic bacterium of the family Flavobacteriaceae, and emended descriptions of the genus Salinimicrobium and Salinimicrobium catena. Int J Syst Evol Microbiol 2010; 60:2303–2306 [View Article] [PubMed]
    [Google Scholar]
  8. Subhash Y, Sasikala C, Ramana CV. Salinimicrobium sediminis sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:984–988 [View Article] [PubMed]
    [Google Scholar]
  9. Kim J-H, Yoon J-H, Kim W. Salinimicrobium soli sp. nov., isolated from soil of reclaimed land. Int J Syst Evol Microbiol 2016; 66:462–467 [View Article] [PubMed]
    [Google Scholar]
  10. Cao WR, Zhang LZ, Hu YH, Jiang MY, Li YJ. Salinimicrobium nanhaiense sp. nov. and Salinimicrobium oceani sp. nov., two novel species of the family Flavobacteriaceae isolated from the South China Sea. Int J Syst Evol Microbiol 2020; 70:5263–5270 [View Article] [PubMed]
    [Google Scholar]
  11. Chen Y-G, Cui X-L, Zhang Y-Q, Li W-J, Wang Y-X et al. Salinimicrobium terrae sp. nov., isolated from saline soil, and emended description of the genus Salinimicrobium. Int J Syst Evol Microbiol 2008; 58:2501–2504 [View Article] [PubMed]
    [Google Scholar]
  12. Xia CQ, Niu HJ, Dong KS, Li G, Sun LP et al. Salinimicrobium sediminilitoris sp.nov., isolated from a tidal flat. Curr Microbiol 2022; 79:350 [View Article]
    [Google Scholar]
  13. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  14. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  15. Nei M, Kumar S, Takahashi K. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci 1998; 95:12390–12397 [View Article] [PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  19. Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinform 2015; 13:278–289 [View Article] [PubMed]
    [Google Scholar]
  20. Roberts RJ, Carneiro MO, Schatz MC. Erratum to: the advantages of SMRT sequencing. Genome Biol 2017; 18:2–5 [View Article] [PubMed]
    [Google Scholar]
  21. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article] [PubMed]
    [Google Scholar]
  22. Denisov G, Walenz B, Halpern AL, Miller J, Axelrod N et al. Consensus generation and variant detection by Celera assembler. Bioinformatics 2008; 24:1035–1040 [View Article] [PubMed]
    [Google Scholar]
  23. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article] [PubMed]
    [Google Scholar]
  24. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  25. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  26. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article] [PubMed]
    [Google Scholar]
  27. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  28. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  29. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article]
    [Google Scholar]
  30. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  31. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  32. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  35. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  36. Schädler S, Burkhardt C, Kappler A. Evaluation of electron microscopic sample preparation methods and imaging techniques for characterization of cell-mineral aggregates. Geomicrobiology J 2008; 25:228–239 [View Article]
    [Google Scholar]
  37. Reichenbach H. The order cytophagales. In Balows ATH, Dworkin M, Harder W, Schleifer KH. eds The Prokaryotes New York: Springer; 1992 pp 3631–3675 [View Article]
    [Google Scholar]
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark: DE: MIDI; 1990
    [Google Scholar]
  40. Hiraishi A. Respiratory quinone profiles as tools for identifying different bacterial populations in activated sludge. J Gen Appl Microbiol 1988; 34:39–56 [View Article]
    [Google Scholar]
  41. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005955
Loading
/content/journal/ijsem/10.1099/ijsem.0.005955
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error