1887

Abstract

Six facultative anaerobic, Gram-stain-positive, oxidase-negative, rod-shaped bacteria (strains zg-B89, zg-B12, zg-Y338, zg-Y138, zg-Y908 and zg-Y766), were isolated from the intestinal contents of in Qinghai Province, PR China. The 16S rRNA gene sequence analysis showed that zg-B89 showed highest similarity to NBRC 101100 (99.5 %), zg-Y338 to DSM 20118 (98.7 %), and zg-Y908 to DSM 20109 (99.0 %). Phylogenetic and phylogenomic analysis based on 16S rRNA gene and 881 core genes revealed that these six strains formed three separate clades in the genus . Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between these three novel species and all members of the genus were below species thresholds (95–96 % for ANI and 70 % for dDDH). The DNA G+C contents of zg-B89, zg-Y338 and zg-Y908 were 73.6, 72.9 and 74.5 %, respectively. Strains zg-B89 and zg-Y908 had anteiso-C, C and anteiso-C A, and zg-Y338 had anteiso-C, C and iso-C as the main fatty acids. All novel type strains had MK-9 (H) as the predominant respiratory quinone, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside as the major polar lipids, and rhamnose, ribose and glucose as the cell-wall sugars. The peptidoglycan amino acids of zg-B89, zg-Y338 and zg-Y908 contained ornithine, alanine, glutamic acid and aspartic acid (except for zg-Y338). Based on genotypic, phenotypic, phylogenetic and biochemical properties, the six uncharacterized strains represent three novel species in the genus , for which the names sp. nov. (type strain zg-B89=GDMCC 1.2821=KCTC 49756), sp. nov. (type strain zg-Y338=GDMCC 1.2829=KCTC 49754) and sp. nov. (type strain zg-Y908=GDMCC 1.2820=KCTC 49755) are proposed, respectively.

Funding
This study was supported by the:
  • Research Units of Discovery of Unknown Bacteria and Function (Award 2018RU010)
    • Principle Award Recipient: JianguoXu
  • National Key R&D Program of China (Award 2019YFC1200505)
    • Principle Award Recipient: LiyunLiu
  • National Key R&D Program of China (Award 2019YFC1200501)
    • Principle Award Recipient: JingYang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005909
2023-05-25
2024-05-18
Loading full text...

Full text loading...

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923
    [Google Scholar]
  2. Stackebrandt E, Keddie RM. Genus Cellulomonas. In Mair NS, Sharpe ME. eds Bergey’s Manual of Systematic Bacteriology vol 2 Baltimore: Williams & Wilkins; 1986 pp 1325–1329
    [Google Scholar]
  3. Li YQ, Zhang H, Xiao M, Dong ZY, Zhang JY et al. Cellulomonas endophytica sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2020; 70:3091–3095 [View Article] [PubMed]
    [Google Scholar]
  4. Shi Z, Luo G, Wang G. Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 2012; 62:2004–2010 [View Article] [PubMed]
    [Google Scholar]
  5. Shi Y-L, Sun Y, Ruan Z-Y, Su J, Yu L-Y et al. Cellulomonas telluris sp. nov., an endoglucanase-producing actinobacterium isolated from Badain Jaran desert sand. Int J Syst Evol Microbiol 2020; 70:631–635 [View Article]
    [Google Scholar]
  6. Dahal RH, Kim J, Kim D-U, Dong K, Hong Y et al. Cellulomonas fulva sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  7. Lee C-M, Weon H-Y, Hong S-B, Jeon Y-A, Schumann P et al. Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:2925–2929 [View Article] [PubMed]
    [Google Scholar]
  8. Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N et al. Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int J Syst Evol Microbiol 2005; 55:1711–1714 [View Article] [PubMed]
    [Google Scholar]
  9. Lee HJ, Kim SY, Whang KS. Cellulomonas citrea sp. nov., isolated from paddy soil. Int J Syst Evol Microbiol 2020; 70:5304–5311 [View Article]
    [Google Scholar]
  10. Collins MD, Pascual C. Reclassification of Actinomyces humiferus (Gledhill and Casida) as Cellulomonas humilata nom. corrig., comb. nov. Int J Syst Evol Microbiol 2000; 50:661–663 [View Article]
    [Google Scholar]
  11. Elberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-Daloii MR et al. Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 2000; 50 Pt 3:993–996 [View Article] [PubMed]
    [Google Scholar]
  12. Zhang L, Xi L, Qiu D, Song L, Dai X et al. Cellulomonas marina sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2013; 63:3014–3018 [View Article]
    [Google Scholar]
  13. Hatayama K, Esaki K, Ide T. Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:60–65 [View Article]
    [Google Scholar]
  14. Rivas R, Trujillo ME, Mateos PF, Martínez-Molina E, Velázquez E. Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 2004; 54:533–536 [View Article]
    [Google Scholar]
  15. Tian Z, Lu S, Jin D, Yang J, Pu J et al. Cellulomonas shaoxiangyii sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai–Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:2204–2210 [View Article]
    [Google Scholar]
  16. Zhang G, Yang J, Lai X-H, Jin D, Lu S et al. Cellulomonas dongxiuzhuiae sp. nov., Cellulomonas wangleii sp. nov. and Cellulomonas fengjieae sp. nov., isolated from the intestinal contents of Marmota himalayana. Int J Syst Evol Microbiol 2022; 72:10 [View Article] [PubMed]
    [Google Scholar]
  17. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol 2013; 13:141–152 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  21. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  24. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  25. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119–129 [View Article] [PubMed]
    [Google Scholar]
  26. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22:1658–1659 [View Article]
    [Google Scholar]
  27. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  30. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article] [PubMed]
    [Google Scholar]
  31. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  32. Horikoshi K. Discovering novel bacteria, with an eye to biotechnological applications. Curr Opin Biotechnol 1995; 6:292–297 [View Article]
    [Google Scholar]
  33. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In Technical Note vol 101 Newark, DE: MIDI; 1990
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  35. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  36. Yoon MH, Ten LN, Im WT, Lee ST. Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 2008; 58:1878–1884 [View Article] [PubMed]
    [Google Scholar]
  37. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  38. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  40. Sun X, Li J, Du J, Xiao H, Ni J. Cellulomonas macrotermitis sp. nov., a chitinolytic and cellulolytic bacterium isolated from the hindgut of a fungus-growing termite. Antonie van Leeuwenhoek 2018; 111:471–478 [View Article]
    [Google Scholar]
  41. Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T et al. Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria. Int J Syst Evol Microbiol 2014; 64:2305–2311 [View Article] [PubMed]
    [Google Scholar]
  42. Tian Y, Han C, Hu J, Zhao J, Zhang C et al. Cellulomonas rhizosphaerae sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 2019; 69:1001–1008 [View Article] [PubMed]
    [Google Scholar]
  43. Rusznyák A, Tóth EM, Schumann P, Spröer C, Makk J et al. Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. Int J Syst Evol Microbiol 2011; 61:1662–1666 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005909
Loading
/content/journal/ijsem/10.1099/ijsem.0.005909
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error