1887

Abstract

A novel Gram-stain-negative, obligately aerobic, short rod-shaped and motile bacterium, designated strain BC00092, was isolated from brackish ground water collected in Stegodon Sea Cave located at Satun UNESCO Global Geopark, Satun Province, Thailand. The phylogenetic analysis of BC00092 based on 16S rRNA gene sequences revealed that the strain represented a member of the genus and was closely related to DSM 17879 (96.68 %) and IMCC25680 (94.89 %). The average nucleotide identity and digital DNA–DNA hybridization values calculated from the whole-genome sequences between BC00092 and closely related type strains of species within the family were lower than the species demarcation threshold values of 95 and 70 %, respectively. Moreover, five conserved signature indels of members of the family were found in the protein sequences from the annotated assembled genome of BC00092. According to the results of the polyphasic taxonomic study, strain BC00092 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is BC00092 (TBRC 13508 = KCTC 92111).

Funding
This study was supported by the:
  • Korea Research Institute of Bioscience and Biotechnology
    • Principle Award Recipient: Jung-SookLee
  • National Center for Genetic Engineering and Biotechnology
    • Principle Award Recipient: PattarapornYukphan
  • RDI Management for National Strategic and Network Division
    • Principle Award Recipient: PattarapornYukphan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005908
2023-05-30
2024-12-06
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Class LT. Betaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual® of Systematic Bacteriology: Volume Two The Proteobacteria Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria Boston, MA: Springer US; 2005 pp 575–922 [View Article]
    [Google Scholar]
  2. Chen S, Rudra B, Gupta RS. Phylogenomics and molecular signatures support division of the order Neisseriales into emended families Neisseriaceae and Chromobacteriaceae and three new families Aquaspirillaceae fam. nov., Chitinibacteraceae fam. nov., and Leeiaceae fam. nov. Syst Appl Microbiol 2021; 44:126251 [View Article] [PubMed]
    [Google Scholar]
  3. Oren A, Garrity G. Notification of changes in taxonomic opinion previously published outside the IJSEM. List of changes in taxonomic opinion no. 35. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  4. Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  5. Lim J-M, Jeon CO, Lee GS, Park D-J, Kang U-G et al. Leeia oryzae gen. nov., sp. nov., isolated from a rice field in Korea. Int J Syst Evol Microbiol 2007; 57:1204–1208 [View Article] [PubMed]
    [Google Scholar]
  6. Song J, Joung Y, Li SH, Hwang J, Cho JC. Leeia aquatica sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2020; 70:5848–5853 [View Article] [PubMed]
    [Google Scholar]
  7. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  8. Ramos-Padrón E, Bordenave S, Lin S, Bhaskar IM, Dong X et al. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 2011; 45:439–446 [View Article] [PubMed]
    [Google Scholar]
  9. Mediavilla O, Geml J, Olaizola J, Oria-de-Rueda JA, Baldrian P et al. Effect of forest fire prevention treatments on bacterial communities associated with productive Boletus edulis sites. Microb Biotechnol 2019; 12:1188–1198 [View Article] [PubMed]
    [Google Scholar]
  10. Megahed A, Zeineldin M, Evans K, Maradiaga N, Blair B et al. Impacts of environmental complexity on respiratory and gut microbiome community structure and diversity in growing pigs. Sci Rep 2019; 9:13773 [View Article] [PubMed]
    [Google Scholar]
  11. Reyer H, Oster M, McCormack UM, Muráni E, Gardiner GE et al. Host-microbiota interactions in Ileum and caecum of pigs divergent in feed efficiency contribute to nutrient utilization. Microorganisms 2020; 8:563 [View Article] [PubMed]
    [Google Scholar]
  12. Tian Z, Zhang Y, Li Y, Chi Y, Yang M. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Water Res 2015; 69:9–19 [View Article] [PubMed]
    [Google Scholar]
  13. Gao P, Xu W, Sontag P, Li X, Xue G et al. Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. Appl Microbiol Biotechnol 2016; 100:4663–4673 [View Article] [PubMed]
    [Google Scholar]
  14. Huang X, Duan C, Yu J, Dong W, Wang H. Response of VFAs and microbial interspecific interaction to primary sludge fermentation temperature. J Clean Prod 2021; 322:129081 [View Article]
    [Google Scholar]
  15. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  16. Saito H, Miura K-I. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochimica et Biophysica Acta (BBA) - Specialized Section on Nucleic Acids and Related Subjects 1963; 72:619–629 [View Article]
    [Google Scholar]
  17. Ezaki T, Yamamoto N, Ninomiya K, Suzuki S, Yabuuchi E. Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Sys Bacteriol 1983; 33:683–698 [View Article]
    [Google Scholar]
  18. Yukphan P, Potacharoen W, Tanasupawat S, Tanticharoen M, Yamada Y. Asaia krungthepensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 2004; 54:313–316 [View Article] [PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  20. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article]
    [Google Scholar]
  21. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  22. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  30. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  31. Krueger F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files; 2015 http://www.bioinformatics.babraham.ac.uk/projects/trim_galore
  32. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016; 44:W3–W10 [View Article] [PubMed]
    [Google Scholar]
  33. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  34. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  35. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  36. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  37. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  38. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  39. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  43. Barrow GI, Feltham RKA. eds Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 2009
    [Google Scholar]
  44. Komagata K, Suzuki K-I. Lipid and Cell-Wall Analysis in Bacterial Systematics. In Colwell RR, Grigorova R. eds Methods in Microbiology vol 19 Academic Press; 1988 pp 161–207
    [Google Scholar]
  45. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  46. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  47. Sasser M. eds Identification of bacteria by gas chromatography of cellular fatty acids technical note # 1012001 Newark: MIDI Inc;
    [Google Scholar]
  48. May G, Faatz E, Villarejo M, Bremer E. Binding protein dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K12. Mol Gen Genet 1986; 205:225–233 [View Article] [PubMed]
    [Google Scholar]
  49. Boscari A, Mandon K, Dupont L, Poggi M-C, Le Rudulier D. BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. J Bacteriol 2002; 184:2654–2663 [View Article] [PubMed]
    [Google Scholar]
  50. Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 2007; 59:206–216 [View Article]
    [Google Scholar]
  51. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  52. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005908
Loading
/content/journal/ijsem/10.1099/ijsem.0.005908
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error