1887

Abstract

A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain, designated as HK4-1, was isolated from mangrove sediments in Hong Kong, PR China. Based on 16S rRNA gene sequence data, strain HK4-1 was found to belong to the genus , family , and showed high similarity to BUT-14 (96.88 %) and H25 (96.88 %). The G+C content of the whole genome of strain HK4-1 was 64.05 mol%. The major fatty acids were C, C 7 and summed feature 3 (C 7 and/or C 6). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and two unknown lipids. The predominant respiratory quinone was Q-10. Based on genomic, phylogenetic, phenotypic, physiological and chemotaxonomic data, strain HK4-1 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain of sp. nov. is HK4-1 (=MCCC 1K08252=JCM 35764).

Funding
This study was supported by the:
  • Shantou University Scientific Research Foundation for Talents (Award No. NTF19013)
    • Principle Award Recipient: TaoPeng
  • Guangdong Natural Science Foundation-General Project (Award 2021A1515010516)
    • Principle Award Recipient: TaoPeng
  • Shantou Science and Technology Plan Project (Award 2020ST011)
    • Principle Award Recipient: ZhongHu
  • Natural Science Foundation of Guangdong Province (Award No. 2022ZX186)
    • Principle Award Recipient: YueyingYe
  • Professorial and Doctoral Scientific Research Foundation of Huizhou University (Award No. 2022JB027)
    • Principle Award Recipient: YueyingYe
  • National Natural Science Foundation of China (Award No. 32000072)
    • Principle Award Recipient: YueyingYe
  • National Natural Science Foundation of China (Award No. 42276158)
    • Principle Award Recipient: TaoPeng
  • National Natural Science Foundation of China (Award No. 32070114)
    • Principle Award Recipient: ZhongHu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005896
2023-05-19
2024-11-04
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article] [PubMed]
    [Google Scholar]
  2. Sheu SY, Liu LP, Chen WM. Novosphingobium bradum sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2016; 66:5083–5090 [View Article]
    [Google Scholar]
  3. Sheu SY, Liu LP, Young CC, Chen WM. Novosphingobium fontis sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2017; 67:2423–2429 [View Article]
    [Google Scholar]
  4. Xian W-D, Li M-M, Salam N, Ding Y-P, Zhou E-M et al. Novosphingobium meiothermophilum sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 2019; 69:1737–1743 [View Article] [PubMed]
    [Google Scholar]
  5. Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 2004; 54:1483–1487 [View Article]
    [Google Scholar]
  6. Lee L-H, Azman A-S, Zainal N, Eng S-K, Fang C-M et al. Novosphingobium malaysiense sp. nov. isolated from mangrove sediment. Int J Syst Evol Microbiol 2014; 64:1194–1201 [View Article]
    [Google Scholar]
  7. Baek SH, Lim JH, Jin L, Lee HG, Lee ST. Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. Int J Syst Evol Microbiol 2011; 61:2464–2468 [View Article]
    [Google Scholar]
  8. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016; 66:3170–3176 [View Article]
    [Google Scholar]
  9. Kämpfer P, Young C-C, Busse H-J, Lin S-Y, Rekha PD et al. Novosphingobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:259–263 [View Article]
    [Google Scholar]
  10. Krishnan R, Menon RR. Likhitha Busse H-J, Tanaka N et al. Novosphingobium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res Microbiol 2017; 168:113–121 [View Article] [PubMed]
    [Google Scholar]
  11. Kämpfer P, Martin K, McInroy JA, Glaeser SP. Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol 2015; 65:195–200 [View Article]
    [Google Scholar]
  12. Xie F, Quan S, Liu D, He W, Wang Y et al. Novosphingobium kunmingense sp. nov., isolated from a phosphate mine. Int J Syst Evol Microbiol 2014; 64:2324–2329 [View Article]
    [Google Scholar]
  13. Yuan J, Lai Q, Zheng T, Shao Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 2009; 59:2084–2088 [View Article]
    [Google Scholar]
  14. Chen Q, Zhang J, Wang C-H, Jiang J, Kwon S-W et al. Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide–degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2014; 64:2573–2578 [View Article]
    [Google Scholar]
  15. Parte AC. LPSN – List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  16. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article]
    [Google Scholar]
  17. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  19. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J et al. GenBank. Nucleic Acids Res 2018; 46:D41–D47 [View Article] [PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  22. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article] [PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  27. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018; 7:1–6 [View Article] [PubMed]
    [Google Scholar]
  28. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  29. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  32. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article]
    [Google Scholar]
  33. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article]
    [Google Scholar]
  34. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 4:6–9
    [Google Scholar]
  35. Ibero J, Galán B, Rivero-Buceta V, García JL. Unraveling the 17β-estradiol degradation pathway in Novosphingobium tardaugens NBRC 16725. Front Microbiol 2020; 11:588300 [View Article] [PubMed]
    [Google Scholar]
  36. Zeng YH, Cai ZH, Zhu JM, Du XP, Zhou J. Two hierarchical LuxR-LuxI type quorum sensing systems in Novosphingobium activate microcystin degradation through transcriptional regulation of the mlr pathway. Water Res 2020; 183:116092 [View Article] [PubMed]
    [Google Scholar]
  37. Perez JM, Kontur WS, Gehl C, Gille DM, Ma Y et al. Redundancy in aromatic O -demethylation and ring-opening reactions in Novosphingobium aromaticivorans and their impact in the metabolism of plant-derived phenolics. Appl Environ Microbiol 2021; 87: [View Article]
    [Google Scholar]
  38. Dai Y, Li N, Zhao Q, Xie S. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 2015; 26:161–170 [View Article] [PubMed]
    [Google Scholar]
  39. Jouanneau Y, Meyer C, Duraffourg N. Dihydroxylation of four- and five-ring aromatic hydrocarbons by the naphthalene dioxygenase from Sphingomonas CHY-1. Appl Microbiol Biotechnol 2016; 100:1253–1263 [View Article] [PubMed]
    [Google Scholar]
  40. Schuler L, Jouanneau Y, Chadhain SMN, Meyer C, Pouli M et al. Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading Sphingomonas sp. strain LH128 able to oxidize benz[a]anthracene. Appl Microbiol Biotechnol 2009; 83:465–475 [View Article] [PubMed]
    [Google Scholar]
  41. Kweon O, Kim S-J, Holland RD, Chen H, Kim D-W et al. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. J Bacteriol 2011; 193:4326–4337 [View Article] [PubMed]
    [Google Scholar]
  42. Halebian S, Harris B, Finegold SM, Rolfe RD. Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 1981; 13:444–448 [View Article] [PubMed]
    [Google Scholar]
  43. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. eds Methods for General and Molecular Bacteriology, 3rd edn. Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  44. Zhou H, Zhang S, Xie J, Wei H, Hu Z et al. Pyrene biodegradation and its potential pathway involving Roseobacter clade bacteria. Int Biodeter Biodegr 2020; 150:104961 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005896
Loading
/content/journal/ijsem/10.1099/ijsem.0.005896
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error