Skip to content
1887

Abstract

Four novel bacterial strains, designated as RG327, SE158, RB56-2 and SE220, were isolated from wet soil in the Republic of Korea. To determine their taxonomic positions, the strains were fully characterized. On the basis of genomic information (16S rRNA gene and draft genome sequences), all four isolates represent members of the genus . The draft genomes of RG327, SE158, RB56-2 and SE220 consisted of circular chromosomes of 2 226 119, 2 507 338, 2 593 639 and 2 548 888 base pairs with DNA G+C contents of 64.6, 63.6, 63.0 and 63.1 %, respectively. All the isolates contained ubiquinone Q-10 as the predominant quinone compound and a fatty acid profile with C, Cω6, C 2-OH summed feature 3 (Cω7/Cω6c) and summed feature 8 (Cω/Cω6) as the major fatty acids, supporting the affiliation of strains RG327, SE158, RB56-2 and SE220 to the genus . The major identified polar lipids in all four novel isolates were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. Moreover, the physiological, biochemical results and low level of DNA–DNA relatedness and average nucleotide identity values allowed the phenotypic and genotypic differentiation of RG327, SE158, RB56-2 and SE220 from other species of the genus with validly published names and indicated that they represented novel species of the genus , for which the names sp. nov. (RG327 = KACC 22409 = LMG 32497), sp. nov. (SE158 = KACC 224408 = LMG 324498), (RB56-2 = KACC 22410 = LMG 32496) and sp. nov., (SE220 = KACC 22406 = LMG 32499) are proposed.

Funding
This study was supported by the:
  • This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A1A01061945), and by Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Project No. 2019H1D3A1A02070958, and by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea.
    • Principle Award Recipient: MuhammadZubair Siddiqi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005884
2023-05-22
2025-01-19
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article] [PubMed]
    [Google Scholar]
  2. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993; 16:227–238 [View Article]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 1999; 43:339–349 [View Article] [PubMed]
    [Google Scholar]
  4. Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53:1253–1260 [View Article] [PubMed]
    [Google Scholar]
  5. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52:1485–1496 [View Article] [PubMed]
    [Google Scholar]
  6. Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article] [PubMed]
    [Google Scholar]
  7. Feng G-D, Yang S-Z, Xiong X, Li H-P, Zhu H-H. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead–zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017; 67:2160–2165 [View Article] [PubMed]
    [Google Scholar]
  8. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article] [PubMed]
    [Google Scholar]
  9. An D-S, Liu Q-M, Lee H-G, Jung M-S, Kim S-C et al. Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 2013; 63:496–501 [View Article] [PubMed]
    [Google Scholar]
  10. Asker D, Beppu T, Ueda K. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 2007; 57:1435–1441 [View Article] [PubMed]
    [Google Scholar]
  11. Asker D, Beppu T, Ueda K. Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 2007; 273:140–148 [View Article] [PubMed]
    [Google Scholar]
  12. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 2001; 51:1491–1498 [View Article] [PubMed]
    [Google Scholar]
  13. Lee JH, Kim DI, Kang JW, Seong CN. Sphingomonas lutea sp. nov., isolated from freshwater of an artificial reservoir. Int J Syst Evol Microbiol 2016; 66:5493–5499 [View Article] [PubMed]
    [Google Scholar]
  14. Srinivasan S, Lee J-J, Kim MK. Sphingomonas rosea sp. nov. and Sphingomonas swuensis sp. nov., rosy colored β-glucosidase-producing bacteria isolated from soil. J Microbiol 2011; 49:610–616 [View Article] [PubMed]
    [Google Scholar]
  15. Yang D-C, Im W-T, Kim MK, Ohta H, Lee S-T. Sphingomonas soli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in the α-4 subgroup of the Proteobacteria. Int J Syst Evol Microbiol 2006; 56:703–707 [View Article] [PubMed]
    [Google Scholar]
  16. Kim H, Chhetri G, Seo T. Sphingomonas edaphi sp. nov., a novel species isolated from beach soil in the Republic of Korea. Int J Syst Evol Microbiol 2020; 70:522–529 [View Article] [PubMed]
    [Google Scholar]
  17. Yan Z-F, Lin P, Won K-H, Li C-T, Park G et al. Sphingomonas rhizophila sp. nov., isolated from rhizosphere of Hibiscus syriacus. Int J Syst Evol Microbiol 2018; 68:681–686 [View Article] [PubMed]
    [Google Scholar]
  18. Cha I, Kang H, Kim H, Joh K. Sphingomonas ginkgonis sp. nov., isolated from phyllosphere of Ginkgo biloba. Int J Syst Evol Microbiol 2019; 69:3224–3229 [View Article]
    [Google Scholar]
  19. Siddiqi MZ, Choi G-M, Kim SY, Choi KD, Im W-T. Sphingomonas agri sp. nov., a bacterium isolated from soil. Int J Syst Evol Microbiol 2017; 67:4429–4434 [View Article] [PubMed]
    [Google Scholar]
  20. Lee J-C, Whang K-S. Sphingomonas segetis sp. nov., isolated from spinach farming field soil. Int J Syst Evol Microbiol 2020; 70:3905–3911 [View Article] [PubMed]
    [Google Scholar]
  21. Li Y-Q, Narsing Rao MP, Zhang H, Guo Y-M, Dong Z-Y et al. Description of Sphingomonas mesophila sp. nov., isolated from Gastrodia elata Blume. Int J Syst Evol Microbiol 2019; 69:1030–1034 [View Article] [PubMed]
    [Google Scholar]
  22. Liu Q, Liu H-C, Zhang J-L, Zhou Y-G, Xin Y-H. Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice. Int J Syst Evol Microbiol 2015; 65:2955–2959 [View Article] [PubMed]
    [Google Scholar]
  23. Huy H, Jin L, Lee KC, Kim S-G, Lee J-S et al. Sphingomonas daechungensis sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2014; 64:1412–1418 [View Article] [PubMed]
    [Google Scholar]
  24. Im W-T, Liu Q-M, Yang J-E, Kim M-S, Kim S-Y et al. Panacagrimonas perspica gen. nov., sp. nov., a novel member of Gammaproteobacteria isolated from soil of a ginseng field. J Microbiol 2010; 48:262–266 [View Article] [PubMed]
    [Google Scholar]
  25. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article] [PubMed]
    [Google Scholar]
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  27. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  28. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [View Article]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  33. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  34. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994; 44:846–849 [View Article]
    [Google Scholar]
  35. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999; 27:4636–4641 [View Article] [PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  40. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article] [PubMed]
    [Google Scholar]
  41. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–655
    [Google Scholar]
  42. Ten LN, Im WT, Kim MK, Kang MS, Lee ST. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 2004; 56:375–382 [View Article] [PubMed]
    [Google Scholar]
  43. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th. Pearson Education, Inc; California, USA: 2002
    [Google Scholar]
  44. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  45. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  46. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. eds Methods in Phytobacteriology Budapest: Akademiai Kaido; 1990 pp 199–204
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005884
Loading
/content/journal/ijsem/10.1099/ijsem.0.005884
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error