1887

Abstract

A strictly anaerobic sulfate-reducing strain, designated SG127, was isolated from paddy soil. SG127 showed the highest 16S rRNA gene sequence similarity to the type strain of (98.2 %). A phylogenetic tree based on 16S rRNA gene sequences indicated that SG127 clustered with members of the genus . Growth of SG127 was observed at 20–37 °C (optimum, 30 °C), pH 5.5–9.0 (optimum, 7.0–8.0) and with 0–0.2 % (w/v) NaCl (optimally without NaCl). SG127 contained MK-7 as the only menaquinone and anteiso-C, anteiso-Cω9, C, iso-C iso-C, iso-C iso-CH, iso-CH and summed feature nine as the major fatty acids. The genomic DNA G+C content of SG127 was 64.6 %. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between SG127 and the closely related were 78.5% and 23.2 %, respectively, which were lower than the cut-off values (ANI 95–96% and dDDH 70 %) for prokaryotic species delineation. SG127 had desulfoviridin, possessed nitrogen fixation genes () and actively fixed nitrogen according to the acetylene reduction assay. On the basis of these results, strain SG127 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SG127 (= GDMCC 1.3137 = JCM 35589).

Funding
This study was supported by the:
  • Provincial Key Project of Science and Technology Innovation (for universities) (Award 2022G02014)
  • National Science Fund for Excellent Young Scholars of China (Award 42222703)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005880
2023-05-15
2024-12-14
Loading full text...

Full text loading...

References

  1. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972–6016 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P. Bergey’s Manual of Systematics of Archaea and Bacteria New York: John Wiley & Sons; pp 1–6 [View Article]
    [Google Scholar]
  4. Suzuki D, Ueki A, Shizuku T, Ohtaki Y, Ueki K. Desulfovibrio butyratiphilus sp. nov., a Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic municipal sewage sludge digester. Int J Syst Evol Microbiol 2010; 60:595–602 [View Article] [PubMed]
    [Google Scholar]
  5. Basso O, Caumette P, Magot M. Desulfovibrio putealis sp. nov., a novel sulfate-reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 2005; 55:101–104 [View Article] [PubMed]
    [Google Scholar]
  6. Shimoshige H, Kobayashi H, Shimamura S, Miyazaki M, Maekawa T. Fundidesulfovibrio magnetotacticus sp. nov., a sulphate-reducing magnetotactic bacterium, isolated from sediments and freshwater of a pond. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  7. Liu GH, Yang S, Tang R, Xie CJ, Zhou SG. Genome analysis and description of three novel diazotrophs Geomonas species isolated from paddy soils. Front Microbiol 2021; 12:801462 [View Article] [PubMed]
    [Google Scholar]
  8. Dong Z-Y, Narsing Rao MP, Wang H-F, Fang B-Z, Liu Y-H et al. Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci Total Environ 2019; 686:107–117 [View Article] [PubMed]
    [Google Scholar]
  9. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406 [View Article]
    [Google Scholar]
  13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  15. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  16. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  17. Kumar RB, Purhonen P, Hebert H, Jegerschöld C. Arachidonic acid promotes the binding of 5-lipoxygenase on nanodiscs containing 5-lipoxygenase activating protein in the absence of calcium-ions. PLoS One 2020; 15:e0228607 [View Article] [PubMed]
    [Google Scholar]
  18. Narsing Rao MP, Dong Z-Y, Kan Y, Dong L, Li S et al. Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 2020; 70:1977–1981 [View Article] [PubMed]
    [Google Scholar]
  19. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article] [PubMed]
    [Google Scholar]
  20. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  21. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  22. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  23. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article] [PubMed]
    [Google Scholar]
  24. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:D277–80 [View Article] [PubMed]
    [Google Scholar]
  25. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 2006; 34:D354–7 [View Article] [PubMed]
    [Google Scholar]
  26. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article] [PubMed]
    [Google Scholar]
  27. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article] [PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  30. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  31. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  32. Pfennig N, Widdel F, Trüper HG. The dissimilatory sulfate-reducing bacteria. Starr M.P., Stolp H., Trüper H.G., Balows A., Schlegel H.G. The prokaryotes 1981; 1926–940 Springer; Berlin:
    [Google Scholar]
  33. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 1981; 129:395–400 [View Article] [PubMed]
    [Google Scholar]
  34. Postgate J. A diagnostic reaction of Desulphovibrio desulphuricans. Nature 1959; 183:481–482 [View Article] [PubMed]
    [Google Scholar]
  35. Postgate JR. Chapter XIII the acetylene reduction test for nitrogen fixation. Methods Microbiol 1972343–356
    [Google Scholar]
  36. Nakajima A, Aono T, Tsukada S, Siarot L, Ogawa T et al. Lon protease of Azorhizobium caulinodans ORS571 is required for suppression of reb gene expression. Appl Environ Microbiol 2012; 78:6251–6261 [View Article] [PubMed]
    [Google Scholar]
  37. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  38. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  41. Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 2012; 13:162 [View Article] [PubMed]
    [Google Scholar]
  42. Seitzinger SP, Garber JH. Nitrogen fixation and 15N2 calibration of the acetylene reduction assay in coastal marine sediments. Mar Ecol Prog Ser 1987; 37:65–73 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005880
Loading
/content/journal/ijsem/10.1099/ijsem.0.005880
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error