1887

Abstract

A polyphasic taxonomic characterization of two novel strain pairs (designated zg-579/zg-578 and zg-536/zg-ZUI104) isolated from the faeces of was conducted based on phylogenetic analysis of the nearly full-length 16S rRNA gene and genome, digital DNA–DNA hybridization, ortho-average nucleotide identity (Ortho-ANI), and phenotypic and chemotaxonomic traits. Comparative analysis of the nearly full-length 16S rRNA gene sequences showed that strain zg-579 was most closely related to FR1436 (97.57 %) and SC8A-24 (97.36 %), whereas strain zg-536 had the highest similarity to MN8 (98.33 %), W2-2-3 (98.26 %) and 2C1-5 (98.19 %). Low levels of DNA–DNA relatedness and Ortho-ANI values (19.8–31.0 %/78.6–88.2 %, zg-579; 19.9–31.3 %/78.8–86.2 %, zg-536) between the two new type strains and previously known species within the genus support the hypothesis that the four newly characterized strains could be considered to represent two novel species within this genus. The dominant cellular fatty acids found in strain pair zg-536/zg-ZUI104 were iso-C and C 9, whereas C 8 was major component in zg-579/zg-578. Galactose and ribose were the main cell-wall sugars in these two new strain pairs. Diphosphatidylglycerol (DPG), phosphatidylcholine, phosphatidylglycerol (PG) and phosphatidylinositol (PI) were the major polar lipids in zg-579, whereas DPG, PG and PI predominated in zg-536. Both strain pairs had MK8(H) as the major respiratory quinone and -diaminopimelic acid as the major cell-wall peptidoglycan. The optimal growth conditions for the two novel strain pairs were 30 °C, pH 7.0 and 0.5 % NaCl (w/v). Based on these polyphasic characterizations, two novel species within the genus are proposed, i.e. sp. nov. and sp. nov., with zg-579 (=CGMCC 4.7663=JCM 33892) and zg-536 (=CGMCC 4.7662=JCM 33891) as the type strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005875
2023-05-26
2024-06-22
Loading full text...

Full text loading...

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976; 26:58–65 [View Article]
    [Google Scholar]
  2. Suh MK, Lee KC, Kim JS, Han KI, Kim HS et al. Nocardioides cynanchi sp. nov., isolated from soil of rhizosphere of Cynanchum wilfordii. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  3. Liu SW, Xue CM, Li FN, Sun CH. Nocardioides vastitatis sp. nov., isolated from Taklamakan desert soil. Int J Syst Evol Microbiol 2020; 70:77–82 [View Article] [PubMed]
    [Google Scholar]
  4. Li C, Shi K, Zhang Y, Wang G. Nocardioides silvaticus sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:68–73 [View Article] [PubMed]
    [Google Scholar]
  5. Wang X, Jiang W-K, Cui M-D, Yang Z-G, Yu X et al. Nocardioides agrisoli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2017; 67:3722–3727 [View Article] [PubMed]
    [Google Scholar]
  6. Amin A, Ahmed I, Habib N, Abbas S, Xiao M et al. Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan. Antonie van Leeuwenhoek 2016; 109:1101–1109 [View Article] [PubMed]
    [Google Scholar]
  7. Qu JH, Li XD, Li HF. Nocardioides taihuensis sp. nov., isolated from fresh water lake sediment. Int J Syst Evol Microbiol 2017; 67:3535–3539 [View Article] [PubMed]
    [Google Scholar]
  8. Singh H, Yin CS. Nocardioides flava sp. nov., isolated from rhizosphere of poppy plant, Republic of Korea. Arch Microbiol 2016; 198:279–285 [View Article]
    [Google Scholar]
  9. Qin S, Yuan B, Zhang Y-J, Bian G-K, Tamura T et al. Nocardioides panzhihuaensis sp. nov., a novel endophytic actinomycete isolated from medicinal plant Jatropha curcas L. Antonie van Leeuwenhoek 2012; 102:353–360 [View Article]
    [Google Scholar]
  10. Han J-H, Kim T-S, Joung Y, Kim MN, Shin K-S et al. Nocardioides endophyticus sp. nov. and Nocardioides conyzicola sp. nov., isolated from herbaceous plant roots. Int J Syst Evol Microbiol 2013; 63:4730–4734 [View Article] [PubMed]
    [Google Scholar]
  11. Dong K, Lu S, Yang J, Pu J, Lai X-H et al. Nocardioides jishulii sp. nov.,isolated from faeces of Tibetan gazelle (Procapra picticaudata). Int J Syst Evol Microbiol 2020; 70:3665–3672 [View Article] [PubMed]
    [Google Scholar]
  12. Huang Y, Wang X, Yang J, Lu S, Lai X-H et al. Nocardioides yefusunii sp. nov., isolated from Equus kiang (Tibetan wild ass) faeces. Int J Syst Evol Microbiol 2019; 69:3629–3635 [View Article]
    [Google Scholar]
  13. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [View Article]
    [Google Scholar]
  14. Zhang H, Zhang H, Qin X, Wang X, Wang Y et al. Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-deoxynivalenol and 3-epi-deoxynivalenol as intermediate products. Front Microbiol 2021; 12:658421 [View Article]
    [Google Scholar]
  15. Srinivasan S, Lee SS, Lee JJ, Kim MK. Nocardioides soli sp. nov., a bacterium isolated from a mountain soil. Antonie van Leeuwenhoek 2014; 106:271–278 [View Article] [PubMed]
    [Google Scholar]
  16. Schippers A, Schumann P, Spröer C. Nocardioides oleivorans sp. nov., a novel crude-oil-degrading bacterium. Int J Syst Evol Microbiol 2005; 55:1501–1504 [View Article] [PubMed]
    [Google Scholar]
  17. Kubota M, Kawahara K, Sekiya K, Uchida T, Hattori Y et al. Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. Syst Appl Microbiol 2005; 28:165–174 [View Article] [PubMed]
    [Google Scholar]
  18. Benedek T, Pápai M, Gharieb K, Bedics A, Táncsics A et al. Nocardioides carbamazepini sp. nov., an ibuprofen degrader isolated from a biofilm bacterial community enriched on carbamazepine. Syst Appl Microbiol 2022; 45:126339 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon J-H, Lee J-K, Jung S-Y, Kim J-A, Kim H-K et al. Nocardioides kongjuensis sp. nov., an N-acylhomoserine lactone-degrading bacterium. Int J Syst Evol Microbiol 2006; 56:1783–1787 [View Article]
    [Google Scholar]
  20. Yoon JH, Cho YG, Lee ST, Suzuki K, Nakase T et al. Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. Int J Syst Bacteriol 1999; 49 Pt 2:675–680 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon JH, Rhee SK, Lee JS, Park YH, Lee ST. Nocardioides pyridinolyticus sp. nov., a pyridine-degrading bacterium isolated from the oxic zone of an oil shale column. Int J Syst Bacteriol 1997; 47:933–938 [View Article]
    [Google Scholar]
  22. Tian Z, Lu S, Jin D, Yang J, Pu J et al. Cellulomonas shaoxiangyii sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:2204–2210 [View Article] [PubMed]
    [Google Scholar]
  23. Zhang G, Lai X-H, Yang J, Jin D, Pu J et al. Luteimonas chenhongjianii, a novel species isolated from rectal contents of Tibetan Plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2020; 70:3186–3193 [View Article] [PubMed]
    [Google Scholar]
  24. Dong K, Yang J, Lu S, Pu J, Lai X-H et al. Microbacterium wangchenii sp. nov., isolated from faeces of Tibetan gazelles (Procapra picticaudata) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:1307–1314 [View Article] [PubMed]
    [Google Scholar]
  25. Zhang S, Wang X, Yang J, Lu S, Lai X-H et al. Nocardioides dongxiaopingii sp. nov., isolated from leaves of Lamiophlomis rotata on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:3234–3240 [View Article] [PubMed]
    [Google Scholar]
  26. Ge Y, Yang J, Lai X-H, Zhang G, Jin D et al. Vagococcus xieshaowenii sp. nov., isolated from snow finch (Montifringilla taczanowskii) cloacal content. Int J Syst Evol Microbiol 2020; 70:2493–2498 [View Article] [PubMed]
    [Google Scholar]
  27. Cheng Y, Jiao Y, Zhang S, Yang J, Lu S et al. Nocardioides dongkuii sp. nov. and nocardioides lijunqiniae sp. nov., isolated from faeces of tibetan antelope (Pantholops hodgsonii) and leaves of dandelion (Taraxacum officinale), respectively, on the Qinghai-Tibet plateau. Int J Syst Evol Microbiol 2021; 71:4920 [View Article] [PubMed]
    [Google Scholar]
  28. Zhou J, Wang X, Xu M, Yang J, Lai XH et al. Description of three new species of genus Nocardioides isolated in the qinghai-tibet plateau of China: Nocardioides ochotonae sp. nov., Nocardioides campestrisoli sp. nov., and Nocardioides pantholopis sp. nov. Int J Syst Evol Microbiol 2022; 72:5507 [View Article]
    [Google Scholar]
  29. Zhang G, Yang J, Lai X-H, Jin D, Pu J et al. Neisseria weixii sp. nov., isolated from rectal contents of Tibetan Plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2019; 69:2305–2311 [View Article]
    [Google Scholar]
  30. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  31. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  32. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  33. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  34. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  36. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  37. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  38. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000; 28:27–30 [View Article]
    [Google Scholar]
  39. Chen C, Zhang W, Zheng H, Lan R, Wang H et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 2013; 51:2582–2591 [View Article]
    [Google Scholar]
  40. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  41. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  42. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  43. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  44. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  45. Zhang G, Yang J, Lai X-H, Lu S, Jin D et al. Neisseria chenwenguii sp. nov. isolated from the rectal contents of a plateau pika (Ochotona curzoniae). Antonie van Leeuwenhoek 2019; 112:1001–1010 [View Article]
    [Google Scholar]
  46. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  47. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  48. Lechevalier MP. The chemotaxonomy of actinomycetes. Actinomycete Taxon 1980; 1980:227–291
    [Google Scholar]
  49. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  50. Zhang J, Ma Y, Yu H. Nocardioides lianchengensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2012; 62:2698–2702 [View Article] [PubMed]
    [Google Scholar]
  51. Tuo L, Dong Y-P, Habden X, Liu J-M, Guo L et al. Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 2015; 65:1604–1610 [View Article]
    [Google Scholar]
  52. Park SC, Baik KS, Kim MS, Chun J, Seong CN. Nocardioides dokdonensis sp. nov., an actinomycete isolated from sand sediment. Int J Syst Evol Microbiol 2008; 58:2619–2623 [View Article] [PubMed]
    [Google Scholar]
  53. Yoon JH, Kang SJ, Park S, Kim W, Oh TK. Nocardioides caeni sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2009; 59:2794–2797 [View Article] [PubMed]
    [Google Scholar]
  54. Cui Y, Woo S-G, Lee J, Sinha S, Kang M-S et al. Nocardioides daeguensis sp. nov., a nitrate-reducing bacterium isolated from activated sludge of an industrial wastewater treatment plant. Int J Syst Evol Microbiol 2013; 63:3727–3732 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005875
Loading
/content/journal/ijsem/10.1099/ijsem.0.005875
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error