1887

Abstract

A Gram-stain negative, aerobic, rod-shaped and creamy pink-coloured bacterium, designated MAHUQ-68, was isolated from rhizospheric soil of a jujube tree. Colonies grew at 10–40 °C (optimum, 28 °C), pH 6.0–9.0 (optimum pH, 7.0) and in the presence of 0–1.5 % NaCl (optimum 0–0.5 %). Positive for both catalase and oxidase activity. Strain MAHUQ-68 hydrolysed casein, starch, aesculin and -tyrosine. Based on the results of phylogenetic analysis using 16S rRNA gene and genome sequences, strain MAHUQ-68 clustered together within the genus . The closest members were HR-AV (98.8 % sequence similarity), DSM 3403 (96.9 %) and R2A36-4 (94.0 %). The genome of strain MAHUQ-68 was 4 250 173 bp long with 68 scaffolds and 3 570 protein-coding genes. The genomic DNA G+C content of the type strain was 38.0 mol%. The average nucleotide identity and DNA–DNA hybridization values between strain MAHUQ-68 and its closest relatives were 72.0–81.4% and 19.8–24.3 %, respectively. The major cellular fatty acids were iso-C and summed feature 3 (C 7 and/or C 6). The main respiratory quinone was menaquinone-7. The polar lipids comprised phosphatidylethanolamine, an unidentified aminolipid and four unidentified lipids. Based on these data, strain MAHUQ-68 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is MAHUQ-68 (=KACC 22249=CGMCC 1.19062).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005858
2023-04-20
2024-05-25
Loading full text...

Full text loading...

References

  1. Weon H-Y, Kim B-Y, Lee C-M, Hong S-B, Jeon Y-A et al. Solitalea koreensis gen. nov., sp. nov. and the reclassification of [Flexibacter] canadensis as Solitalea canadensis comb. nov. Int J Syst Evol Microbiol 2009; 59:1969–1975 [View Article] [PubMed]
    [Google Scholar]
  2. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998; 48 Pt 1:165–177 [View Article] [PubMed]
    [Google Scholar]
  3. Krieg NR, Ludwig W, Euzeby J, Phylum WWB et al. Phylum XIV. Bacteroidetes phyl. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. eds Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 4 New York: Springer; 2011 p 25 [View Article]
    [Google Scholar]
  4. Lee Y, Jeon CO. Solitalea longa sp. nov., isolated from freshwater and emended description of the genus Solitalea. Int J Syst Evol Microbiol 2018; 68:2826–2831 [View Article] [PubMed]
    [Google Scholar]
  5. Christensen P. Flexibacter canadensis sp. nov. IntJ Syst Bacteriol 1980; 30:429–432 [View Article]
    [Google Scholar]
  6. Huq MA, Akter S, Siddiqi MZ, Balusamy SR, Natarajan S et al. Sphingobium tyrosinilyticum sp. nov., a tyrosine hydrolyzing bacterium isolated from Korean radish garden. Arch Microbiol 2018; 200:1143–1149 [View Article] [PubMed]
    [Google Scholar]
  7. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  8. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  9. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  10. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  11. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  12. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  13. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  14. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  18. Akter S, Wang X, Lee S-Y, Rahman MM, Park J-H et al. Paenibacillus roseus sp. nov., a ginsenoside-transforming bacterium isolated from forest soil. Arch Microbiol 2021; 203:3997–4004 [View Article] [PubMed]
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  20. Akter S, N A M K, Lee S-Y, Moon S-K, Choi C et al. Ramlibacter pinisoli sp. nov., a novel bacterial species isolated from pine garden soil. Int J Syst Evol Microbiol 2020; 70:5841–5847 [View Article] [PubMed]
    [Google Scholar]
  21. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters (GC-FAME). MIDI Tech Note 101. Newark, MIDI Inc: 1990
  22. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  23. Akter S, Park JH, Rahman MM, Huq MA. Niastella soli sp. nov., isolated from rhizospheric soil of a persimmon tree. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  24. Akter S, Huq MA. Sphingomonas chungangi sp. nov., a bacterium isolated from garden soil sample. Int J Syst Evol Microbiol 2020; 70:4151–4157 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005858
Loading
/content/journal/ijsem/10.1099/ijsem.0.005858
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error