Skip to content
1887

Abstract

Organisms with distinctive biological features and cellular organization constitute the bacterial phylum . In this study, we formally describe a novel isolate, strain ICT_H6.2, isolated from sediment samples collected in the brackish environment of the Tagus River estuary (Portugal) using an iChip-based culturing technique. The 16S rRNA gene analysis placed this strain into the phylum and family , with a similarity value of 98.0 % to its closest relative Pan181, the currently only known member of the genus. Strain ICT_H6.2 has a genome size of 7.8 Mbp and a DNA G+C content of 59.6 mol %. Strain ICT_H6.2 is heterotrophic, aerobic and capable of microaerobic growth. This strain grows from 10 to 37 °C and from pH 6.5 to 10.0, requires salt to grow, and can tolerate up to 4 % (w/v) NaCl. Diverse nitrogen and carbon sources are utilized for growth. Morphologically, strain ICT_H6.2 is white to beige pigmented, spherical to ovoid in shape and around 1.4×1.1 µm in size. The strain clusters mainly in aggregates and younger cells show motility. Ultrastructural studies showed a cell plan with cytoplasmatic membrane invaginations and unusual filamentous structures with hexagonal organization in transversal section. Morphological, physiological and genomic comparison between strain ICT_H6.2 and its closest relatives strongly suggests it represents a novel species within the genus , for which we propose the name sp. nov., represented by strain ICT_H6.2 as the type strain (=CECT 30574=DSM 114064).

Funding
This study was supported by the:
  • Norte Portugal Regional Operational Program (NORTE 2020) (Award NORTE-01-0145-FEDER-000040)
    • Principle Award Recipient: NotApplicable
  • Fundação para a Ciência e Tecnologia (Award UIDP/04423/2020)
    • Principle Award Recipient: OlgaMaria Lage
  • Fundação para a Ciência e Tecnologia (Award FCT UIDB/04423/2020)
    • Principle Award Recipient: OlgaMaria Lage
  • Fundação para a Ciência e Tecnologia (PT) (Award SFRH/BD/145577/2019)
    • Principle Award Recipient: InêsRosado Vitorino
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005850
2023-04-20
2025-01-24
Loading full text...

Full text loading...

References

  1. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 2021; 71:10 [View Article]
    [Google Scholar]
  2. Wagner M, Horn M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 2006; 17:241–249 [View Article] [PubMed]
    [Google Scholar]
  3. Rivas-Marín E, Devos DP. The paradigms they are a-changin’: past, present and future of PVC bacteria research. Antonie van Leeuwenhoek 2018; 111:785–799 [View Article] [PubMed]
    [Google Scholar]
  4. Wiegand S, Jogler M, Jogler C. On the maverick planctomycetes. FEMS Microbiol Rev 2018; 42:739–760 [View Article] [PubMed]
    [Google Scholar]
  5. Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J et al. Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nat Microbiol 2020; 5:126–140 [View Article] [PubMed]
    [Google Scholar]
  6. Boedeker C, Schüler M, Reintjes G, Jeske O, van Teeseling MCF et al. Determining the bacterial cell biology of planctomycetes. Nat Commun 2017; 8:14853 [View Article] [PubMed]
    [Google Scholar]
  7. Rivas-Marín E, Canosa I, Devos DP. Evolutionary cell biology of division mode in the bacterial Planctomycetes-Verrucomicrobia- Chlamydiae Superphylum. Front Microbiol 2016; 7:1964 [View Article]
    [Google Scholar]
  8. Devos DP. PVC bacteria: variation of, but not exception to, the Gram-negative cell plan. Trends Microbiol 2014; 22:14–20 [View Article] [PubMed]
    [Google Scholar]
  9. Acehan D, Santarella-Mellwig R, Devos DP. A bacterial tubulovesicular network. J Cell Sci 2014; 127:277–280 [View Article] [PubMed]
    [Google Scholar]
  10. Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP. Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol 2013; 11:e1001565 [View Article] [PubMed]
    [Google Scholar]
  11. van Niftrik L, Devos DP. Editorial: Planctomycetes-Verrucomicrobia-Chlamydiae bacterial superphylum: new model organisms for evolutionary cell biology. Front Microbiol 2017; 8:1458 [View Article] [PubMed]
    [Google Scholar]
  12. Sagulenko E, Nouwens A, Webb RI, Green K, Yee B et al. Nuclear pore-like structures in a compartmentalized bacterium. PLoS One 2017; 12:e0169432 [View Article] [PubMed]
    [Google Scholar]
  13. Sagulenko E, Morgan GP, Webb RI, Yee B, Lee K-C et al. Structural studies of planctomycete Gemmata obscuriglobus support cell compartmentalisation in a bacterium. PLoS One 2014; 9:e91344 [View Article] [PubMed]
    [Google Scholar]
  14. Schmidt JM, Starr MP. Ultrastructural features of budding cells in a prokaryote belonging to morphotype IV of theBlastocaulis-Planctomyces group. Curr Microbiol 1982; 7:7–11 [View Article]
    [Google Scholar]
  15. Lage OM, Bondoso J, Lobo-da-Cunha A. Insights into the ultrastructural morphology of novel planctomycetes. Antonie van Leeuwenhoek 2013; 104:467–476 [View Article] [PubMed]
    [Google Scholar]
  16. van Niftrik L, Jetten MSM. Anaerobic ammonium-oxidizing bacteria: unique microorganisms with exceptional properties. Microbiol Mol Biol Rev 2012; 76:585–596 [View Article] [PubMed]
    [Google Scholar]
  17. van Niftrik L, Geerts WJC, van Donselaar EG, Humbel BM, Webb RI et al. Cell division ring, a new cell division protein and vertical inheritance of a bacterial organelle in anammox planctomycetes. Mol Microbiol 2009; 73:1009–1019 [View Article] [PubMed]
    [Google Scholar]
  18. de Almeida NM, Neumann S, Mesman RJ, Ferousi C, Keltjens JT et al. Immunogold localization of key metabolic enzymes in the anammoxosome and on the tubule-like structures of Kuenenia stuttgartiensis. J Bacteriol 2015; 197:2432–2441 [View Article] [PubMed]
    [Google Scholar]
  19. Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. Phylum XXV. Planctomycetes Garrity and Holt 2001 137 emend. Ward. In Bergey’s Manual of Systematic Bacteriology: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes New York, NY: Springer; 2010
    [Google Scholar]
  20. Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A et al. Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J Gen Appl Microbiol 2009; 55:267–275 [View Article] [PubMed]
    [Google Scholar]
  21. Lodha T, Narvekar S, Karodi P. Classification of uncultivated anammox bacteria and Candidatus Uabimicrobium into new classes and provisional nomenclature as Candidatus Brocadiia classis nov. and Candidatus Uabimicrobiia classis nov. of the phylum planctomycetes and novel family Candidatus Scalinduaceae fam. nov to accommodate the genus Candidatus Scalindua. Syst Appl Microbiol 2021; 44:126272 [View Article] [PubMed]
    [Google Scholar]
  22. Vitorino IR, Lage OM. The planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169–201 [View Article] [PubMed]
    [Google Scholar]
  23. Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J et al. Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl Environ Microbiol 2003; 69:7354–7363 [View Article] [PubMed]
    [Google Scholar]
  24. Dedysh SN, Kulichevskaya IS, Beletsky AV, Ivanova AA, Rijpstra WIC et al. Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov. Syst Appl Microbiol 2020; 43:126050 [View Article] [PubMed]
    [Google Scholar]
  25. Storesund JE, Øvreås L. Correction to: diversity of planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel planctomycete from deep sea iron-hydroxide deposits. Antonie Van Leeuwenhoek 2021; 114:1321–1322 [View Article] [PubMed]
    [Google Scholar]
  26. Storesund JE, Øvreås L. Diversity of planctomycetes in iron-hydroxide deposits from the arctic mid ocean ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel planctomycete from deep sea iron-hydroxide deposits. Antonie van Leeuwenhoek 2013; 104:569–584 [View Article] [PubMed]
    [Google Scholar]
  27. Wiegand S, Jogler M, Boedeker C, Heuer A, Peeters SH et al. Updates the recently introduced family Lacipirellulaceaein the phylum planctomycetes: isolation of strains belonging to the novel genera Aeoliella, Botrimarina, Pirellulimonas and Pseudobythopirellula and the novel species Bythopirellula polymerisocia and Posidoniimonas corsicana. Antonie van Leeuwenhoek 2020; 113:1979–1997
    [Google Scholar]
  28. Wiegand S, Rast P, Kallscheuer N, Jogler M, Heuer A et al. Analysis of bacterial communities on North Sea macroalgae and characterization of the isolated Planctomycetes Adhaeretor mobilis gen. nov., sp. nov., Roseimaritima multifibrata sp. nov., Rosistilla ulvae sp. nov. and Rubripirellula lacrimiformis sp. nov. Microorganisms 2021; 9:1494 [View Article] [PubMed]
    [Google Scholar]
  29. Kallscheuer N, Rast P, Jogler M, Wiegand S, Kohn T et al. Analysis of bacterial communities in a municipal duck pond during a phytoplankton bloom and isolation of Anatilimnocola aggregata gen. nov., sp. nov., Lacipirellula limnantheis sp. nov. and Urbifossiella limnaea gen. nov., sp. nov. belonging to the phylum planctomycetes. Environ Microbiol 2021; 23:1379–1396 [View Article] [PubMed]
    [Google Scholar]
  30. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 2010; 76:2445–2450 [View Article] [PubMed]
    [Google Scholar]
  31. Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V et al. Novel and conventional isolation techniques to obtain planctomycetes from marine environments. Microorganisms 2021; 9:10 [View Article] [PubMed]
    [Google Scholar]
  32. Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:fiac066 [View Article] [PubMed]
    [Google Scholar]
  33. Lage OM, Bondoso J. Planctomycetes diversity associated with macroalgae. FEMS Microbiol Ecol 2011; 78:366–375 [View Article] [PubMed]
    [Google Scholar]
  34. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  35. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article] [PubMed]
    [Google Scholar]
  36. Kumar S, Stecher G, Li M, Knyaz C, Tamura K et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  37. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  38. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol 2018; 19:153 [View Article] [PubMed]
    [Google Scholar]
  39. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V et al. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 2021; 49:D1020–D1028 [View Article] [PubMed]
    [Google Scholar]
  40. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article] [PubMed]
    [Google Scholar]
  41. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article] [PubMed]
    [Google Scholar]
  42. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  43. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article] [PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  45. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  46. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  48. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article] [PubMed]
    [Google Scholar]
  49. Kallscheuer N, Wiegand S, Peeters SH, Jogler M, Boedeker C et al. Description of three bacterial strains belonging to the new genus Novipirellula gen. nov., reclassificiation of Rhodopirellula rosea and Rhodopirellula caenicola and readjustment of the genus threshold of the phylogenetic marker rpoB for Planctomycetaceae. Antonie van Leeuwenhoek 2020; 113:1779–1795 [View Article] [PubMed]
    [Google Scholar]
  50. Bondoso J, Harder J, Lage OM. rpoB gene as a novel molecular marker to infer phylogeny in planctomycetales. Antonie van Leeuwenhoek 2013; 104:477–488 [View Article] [PubMed]
    [Google Scholar]
  51. Alanjary M, Steinke K, Ziemert N. AutoMLST: an automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res 2019; 47:W276–W282 [View Article] [PubMed]
    [Google Scholar]
  52. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  53. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [View Article] [PubMed]
    [Google Scholar]
  54. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article] [PubMed]
    [Google Scholar]
  55. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  56. Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N et al. Discovery of an abundance of biosynthetic gene clusters in Shark Bay microbial mats. Front Microbiol 2020; 11:1950 [View Article] [PubMed]
    [Google Scholar]
  57. Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 2015; 13:509–523 [View Article] [PubMed]
    [Google Scholar]
  58. Costa M, Sampaio-Dias IE, Castelo-Branco R, Scharfenstein H, Rezende de Castro R et al. Structure of hierridin C, synthesis of hierridins B and C, and evidence for prevalent alkylresorcinol biosynthesis in picocyanobacteria. J Nat Prod 2019; 82:393–402 [View Article] [PubMed]
    [Google Scholar]
  59. Freitas S, Martins R, Costa M, Leão PN, Vitorino R et al. Hierridin B isolated from a marine cyanobacterium alters VDAC1, mitochondrial activity, and cell cycle genes on HT-29 colon adenocarcinoma cells. Mar Drugs 2016; 14:158 [View Article] [PubMed]
    [Google Scholar]
  60. Leão PN, Costa M, Ramos V, Pereira AR, Fernandes VC et al. Antitumor activity of hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains. PLoS One 2013; 8:e69562 [View Article] [PubMed]
    [Google Scholar]
  61. Lam KS, Hesler GA, Gustavson DR, Crosswell AR, Veitch JM et al. Kedarcidin, a new chromoprotein antitumor antibiotic. I. Taxonomy of producing organism, fermentation and biological activity. J Antibiot 1991; 44:472–478 [View Article] [PubMed]
    [Google Scholar]
  62. Kunath BJ, Bremges A, Weimann A, McHardy AC, Pope PB. Metagenomics and CAZyme discovery. Methods Mol Biol 2017; 1588:255–277 [View Article] [PubMed]
    [Google Scholar]
  63. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  64. Kanehisa M, Sato Y. KEGG mapper for inferring cellular functions from protein sequences. Protein Sci 2020; 29:28–35 [View Article] [PubMed]
    [Google Scholar]
  65. Ensign SA. Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation. Mol Microbiol 2006; 61:274–276 [View Article] [PubMed]
    [Google Scholar]
  66. Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rubinisphaera margarita sp. nov., a novel planctomycete isolated from marine sediments collected in the Portuguese north coast. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  67. Izumi H, Sagulenko E, Webb RI, Fuerst JA. Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay, Australia. Antonie van Leeuwenhoek 2013; 104:533–546 [View Article] [PubMed]
    [Google Scholar]
  68. Bondoso J, Godoy-Vitorino F, Balagué V, Gasol JM, Harder J et al. Epiphytic planctomycetes communities associated with three main groups of macroalgae. FEMS Microbiol Ecol 2017; 93:fiw255 [View Article] [PubMed]
    [Google Scholar]
  69. Bondoso J, Balagué V, Gasol JM, Lage OM. Community composition of the planctomycetes associated with different macroalgae. FEMS Microbiol Ecol 2014; 88:445–456 [View Article] [PubMed]
    [Google Scholar]
  70. Lage OM, Bondoso J. Bringing planctomycetes into pure culture. Front Microbiol 2012; 3:405 [View Article] [PubMed]
    [Google Scholar]
  71. Lage OM, Bondoso J, Viana F. Isolation and characterization of planctomycetes from the sediments of a fish farm wastewater treatment tank. Arch Microbiol 2012; 194:879–885 [View Article] [PubMed]
    [Google Scholar]
  72. Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS et al. Aquisphaera giovannonii gen. nov., sp. nov., a planctomycete isolated from a freshwater aquarium. Int J Syst Evol Microbiol 2011; 61:2844–2850 [View Article] [PubMed]
    [Google Scholar]
  73. Pradel N, Fardeau ML, Tindall BJ, Spring S. Anaerohalosphaera lusitana gen. nov., sp. nov., and Limihaloglobus sulfuriphilus gen. nov., sp. nov., isolated from solar saltern sediments, and proposal of Anaerohalosphaeraceae fam. nov. within the order Sedimentisphaerales. Int J Syst Evol Microbiol 2020; 70:1321–1330 [View Article]
    [Google Scholar]
  74. Almeida E, F Carvalho M, Lage OM. Culturomics remains a highly valuable methodology to obtain rare microbial diversity with putative biotechnological potential from two Portuguese salterns. Front Biosci (Elite Ed) 2022; 14:11 [View Article] [PubMed]
    [Google Scholar]
  75. Lage OM, van Niftrik L, Jogler C, Devos DP. Planctomycetes. In Schmidt TM. eds Encyclopedia of Microbiology, 4th edn. Oxford: Academic Press; 2019 pp 614–626
    [Google Scholar]
  76. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article] [PubMed]
    [Google Scholar]
  77. Bondoso J, Albuquerque L, Lobo-da-Cunha A, da Costa MS, Harder J et al. Rhodopirellula lusitana sp. nov. and Rhodopirellula rubra sp. nov., isolated from the surface of macroalgae. Syst Appl Microbiol 2014; 37:157–164 [View Article] [PubMed]
    [Google Scholar]
  78. Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS et al. Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community of macroalgae. Syst Appl Microbiol 2015; 38:8–15 [View Article] [PubMed]
    [Google Scholar]
  79. Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 1986; 144:1–7 [View Article]
    [Google Scholar]
  80. Schubert T, Kallscheuer N, Wiegand S, Boedeker C, Peeters SH et al. Calycomorphotria hydatis gen. nov., sp. nov., a novel species in the family Planctomycetaceae with conspicuous subcellular structures. Antonie van Leeuwenhoek 2020; 113:1877–1887 [View Article] [PubMed]
    [Google Scholar]
  81. Chicano TM, Dietrich L, de Almeida NM, Akram M, Hartmann E et al. Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nat Microbiol 2021; 6:1129–1139 [View Article] [PubMed]
    [Google Scholar]
  82. Wagstaff J, Löwe J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 2018; 16:187–201 [View Article] [PubMed]
    [Google Scholar]
  83. Rivas-Marin E, Peeters SH, Claret Fernández L, Jogler C, van Niftrik L et al. Non-essentiality of canonical cell division genes in the planctomycete Planctopirus limnophila. Sci Rep 2020; 10:66 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005850
Loading
/content/journal/ijsem/10.1099/ijsem.0.005850
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error