Skip to content
1887

Abstract

Members of the genus were frequently isolated from polluted environments and possess great bioremediation potential. Here, three species, designated B2637, B2580 and B1949, were isolated from mangrove sediments and might represent novel species in the genus based on a polyphasic taxonomy study. Phylogenomic analysis revealed that strains B2580, B1949 and B2637 clustered with NBRC 102051, ‘’ F72 and 502str22, respectively. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between isolates and their closely related species were less than 94 and 54 %, respectively, all below the threshold of species discrimination. The sizes of the genomes of isolates B2580, B2637 and B1949 ranged from 4.4 to 4.6 Mb, containing 63.3–66.4 % G+C content. Analysis of their genomic sequences identified genes related to pesticide degradation, heavy-metal resistance, nitrogen fixation, antibiotic resistance and sulphur metabolism, revealing the biotechnology potential of these isolates. Except for B2637, B1949 and B2580 were able to grow in the presence of quinalphos. Results from these polyphasic taxonomic analyses support the affiliation of these strains to three novel species within the genus , for which we propose the name sp. nov. B2580 (=KCTC 72967=MCCC 1K04555), sp. nov. B1949 (=KCTC 92158=MCCC 1K03763) and sp. nov. B2637 (KCTC 72969=MCCC 1K04460).

Funding
This study was supported by the:
  • the Guangxi special talent base (Award AD22035020)
    • Principle Award Recipient: XinliPan
  • the Guangxi natural science foundation for youth scholar (Award 2021GXNSFBA220020)
    • Principle Award Recipient: XinliPan
  • the Guangxi natural science foundation for youth scholar (Award 2018GXNSFBA050021)
    • Principle Award Recipient: WenjinHu
  • Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry (Award 17-259-74)
    • Principle Award Recipient: ShushiHuang
  • the Fundamental Research Funds for Guangxi Academy of Sciences (Award 2019YBJ101)
    • Principle Award Recipient: XinliPan
  • the Fundamental Research Funds for Guangxi Academy of Sciences (Award 2018YBJ303)
    • Principle Award Recipient: WenjinHu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005843
2023-04-28
2025-04-21
Loading full text...

Full text loading...

References

  1. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Huo YY, You H, Li ZY, Wang CS, Xu XW. Novosphingobium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2015; 65:676–680 [View Article]
    [Google Scholar]
  4. Liu Y, Pei T, Du J, Huang H, Deng MR et al. Comparative genomic analysis of the genus Novosphingobium and the description of two novel species Novosphingobium aerophilum sp. nov. and Novosphingobium jiangmenense sp. nov. Syst Appl Microbiol 2021; 44:126202 [View Article]
    [Google Scholar]
  5. Xian W-D, Li M-M, Salam N, Ding Y-P, Zhou E-M et al. Novosphingobium meiothermophilum sp. nov., isolated from a hot spring. Int J Syst Evol Microbiol 2019; 69:1737–1743 [View Article]
    [Google Scholar]
  6. Zhang DC, Liu YX, Huang HJ. Novosphingobium profundi sp. nov. isolated from a deep-sea seamount. Antonie van Leeuwenhoek 2017; 110:19–25 [View Article]
    [Google Scholar]
  7. Suzuki S, Hiraishi A. Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 2007; 53:221–228 [View Article]
    [Google Scholar]
  8. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article]
    [Google Scholar]
  9. Sheu SY, Liu LP, Chen WM. Novosphingobium bradum sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2016; 66:5083–5090 [View Article]
    [Google Scholar]
  10. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 2014; 64:594–598 [View Article]
    [Google Scholar]
  11. Chen Q, Zhang J, Wang CH, Jiang J, Kwon SW et al. Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2014; 64:2573–2578 [View Article]
    [Google Scholar]
  12. Rodriguez-Conde S, Molina L, González P, García-Puente A, Segura A. Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl Microbiol Biotechnol 2016; 100:10627–10636 [View Article]
    [Google Scholar]
  13. Wongwongsee W, Chareanpat P, Pinyakong O. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. Mar Pollut Bull 2013; 74:95–104 [View Article] [PubMed]
    [Google Scholar]
  14. Gogoleva NE, Nikolaichik YA, Ismailov TT, Gorshkov VY, Safronova VI et al. Complete genome sequence of the abscisic acid-utilizing strain Novosphingobium sp. P6W. 3 Biotech 2019; 9:94 [View Article]
    [Google Scholar]
  15. Yun SH, Choi CW, Lee SY, Lee YG, Kwon J et al. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. PLoS One 2014; 7:e90812 [View Article]
    [Google Scholar]
  16. Krishnan R, Menon RR, Likhitha ., Busse H-J, Tanaka N et al. Novosphingobium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice. Res Microbiol 2017; 168:113–121 [View Article]
    [Google Scholar]
  17. Zhang L, Gao JS, Kim SG, Zhang CW, Jiang JQ et al. Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots. Int J Syst Evol Microbiol 2016; 66:302–307 [View Article]
    [Google Scholar]
  18. Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 2018; 37:1557–1569 [View Article]
    [Google Scholar]
  19. Qiu YW, Qiu HL, Zhang G, Li J. Bioaccumulation and cycling of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in three mangrove reserves of south China. Chemosphere 2019; 217:195–203 [View Article] [PubMed]
    [Google Scholar]
  20. Tang D, Liu X, He H, Cui Z, Gan H et al. Distribution, sources and ecological risks of organochlorine compounds (DDTs, HCHs and PCBs) in surface sediments from the Pearl River Estuary, China. Mar Pollut Bull 2020; 152:110942 [View Article] [PubMed]
    [Google Scholar]
  21. Lee LH, Azman AS, Zainal N, Eng SK, Fang CM et al. Novosphingobium malaysiense sp. nov. isolated from mangrove sediment. Int J Syst Evol Microbiol 2014; 64:1194–1201 [View Article]
    [Google Scholar]
  22. Wanapaisan P, Laothamteep N, Vejarano F, Chakraborty J, Shintani M et al. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. J Hazard Mater 2018; 342:561–570 [View Article] [PubMed]
    [Google Scholar]
  23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  29. Thomas RH. Molecular evolution and phylogenetics. Heredity 2001; 86:385 [View Article]
    [Google Scholar]
  30. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  31. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol 2019; 1962:227–245 [View Article]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  33. Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6:24373 [View Article] [PubMed]
    [Google Scholar]
  34. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  36. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  37. Xie C, Dinno MA, Li YQ. Near-infrared Raman spectroscopy of single optically trapped biological cells. Opt Lett 2002; 27:249–251 [View Article] [PubMed]
    [Google Scholar]
  38. Zhang Y, Miao Z, Huang X, Wang X, Liu J et al. Laser Tweezers Raman Spectroscopy (LTRS) to detect effects of chlorine dioxide on individual Nosema bombycis spores. Appl Spectrosc 2019; 73:774–780 [View Article]
    [Google Scholar]
  39. Song D, Chen Y, Li J, Wang H, Ning T et al. A graphical user interface (NWUSA) for Raman spectral processing, analysis and feature recognition. J Biophotonics 2021; 14:e202000456 [View Article]
    [Google Scholar]
  40. Kashif M, Majeed MI, Nawaz H, Rashid N, Abubakar M et al. Surface-enhanced Raman spectroscopy for identification of food processing bacteria. Spectrochim Acta A Mol Biomol Spectrosc 2021; 261:119989 [View Article] [PubMed]
    [Google Scholar]
  41. Jendrossek D, Pfeiffer D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 2014; 16:2357–2373 [View Article] [PubMed]
    [Google Scholar]
  42. Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Lett 1996; 384:240–242 [View Article] [PubMed]
    [Google Scholar]
  43. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article] [PubMed]
    [Google Scholar]
  44. Long Z, Wang X, Wang Y, Dai H, Li C et al. Characterization of a novel carbendazim-degrading strain Rhodococcus sp. CX-1 revealed by genome and transcriptome analyses. Sci Total Environ 2021; 754:142137 [View Article]
    [Google Scholar]
  45. Bhatt P, Gangola S, Chaudhary P, Khati P, Kumar G et al. Pesticide induced up-regulation of esterase and aldehyde dehydrogenase in indigenous Bacillus spp. Bioremediation J 2019; 23:42–52 [View Article]
    [Google Scholar]
  46. Semana P, Powlowski J. Four aromatic intradiol ring cleavage dioxygenases from Aspergillus niger. Appl Environ Microbiol 2019; 85:85 [View Article]
    [Google Scholar]
  47. Zhao H, Yan B, Mo S, Nie S, Li Q et al. Carbohydrate metabolism genes dominant in a subtropical marine mangrove ecosystem revealed by metagenomics analysis. J Microbiol 2019; 57:575–586
    [Google Scholar]
  48. Yuan J, Lai Q, Zheng T, Shao Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol 2009; 59:2084–2088
    [Google Scholar]
  49. Tindall BJ, Sikorski J, Smibert RM, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T et al. eds Methods for General and Molecular Microbiology, 3rd. edn American Society for Microbiology: Washington, DC; 2007 pp 330–393
    [Google Scholar]
  50. Sasser M. Bacterial identification by gas chromatographic analysis of fatty acid methyl esters GC-FAME. MIDI Technical Note; 2006
  51. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  52. Chen X, Dong B, Chen T, Ren N, Wang J et al. Novosphingobium decolorationis sp. nov., an aniline blue-decolourizing bacterium isolated from East Pacific sediment. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005843
Loading
/content/journal/ijsem/10.1099/ijsem.0.005843
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error