Skip to content
1887

Abstract

Three strains, TT30, TT37 and L3, were isolated from tidal flat samples. Cells were Gram-stain-negative, non-motile and rod shaped. Cells of strains TT30 and TT37 were able to grow in a medium containing 1.0–15.0 % (w/v) NaCl (optimum, 3.0 and 4.0 %, respectively), and cells of strain L3 was able to grow in a medium containing 1.0–10.0 % (w/v) NaCl (optimum, 1.0 %). Growth of the three strains was observed at pH 6.0–10.0 and at 10–40 °C. Strains TT30, TT37 and L3 showed the highest similarity to DSM 11525 (97.7 %), . CGMCC 1.10658 (98.0 %) and DSM 6810 (97.9 %), respectively. Results of phylogenetic analyses indicated that the three isolates represented two distinct lineages within the genus . The DNA G+C contents of strains TT30, TT37 and L3 were 61.3, 60.9 and 60.2%, respectively. The average nucleotide identity and DNA–DNA hybridization values among strains TT30, TT37 and L3 and the reference strains were 84.4–87.4 and 19.6–28.9 %, respectively. Differential phenotypic properties, chemotaxonomic differences, phylogenetic distinctiveness, together with the genomic data, demonstrated that strains TT30, TT37 and L3 represent novel species of the genus , which are named sp. nov. (TT30=KCTC 92167=MCCC 1K07276), sp. nov. (TT37=KCTC 92168=MCCC 1K07277) and sp. nov. (L3=KCTC 92165=MCCC 1K07278).

Funding
This study was supported by the:
  • the Scientific Research Fund of the Second Institute of Oceanography (Award JZ1901)
    • Principle Award Recipient: Xue-WeiXu
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2021FY100900)
    • Principle Award Recipient: YuehongWu
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2019FY100700)
    • Principle Award Recipient: Xue-WeiXu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005842
2023-04-20
2025-01-20
Loading full text...

Full text loading...

References

  1. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997; 47:369–376 [View Article]
    [Google Scholar]
  2. Miyazaki M, Nogi Y, Ohta Y, Hatada Y, Fujiwara Y et al. Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 2008; 58:1128–1133 [View Article]
    [Google Scholar]
  3. Cheng Y, Zhu S, Guo C, Xie F, Jung D et al. Microbulbifer hainanensis sp. nov., a moderately halopilic bacterium isolated from mangrove sediment. Antonie van Leeuwenhoek 2021; 114:1033–1042 [View Article]
    [Google Scholar]
  4. Wang C-S, Wang Y, Xu X-W, Zhang D-S, Wu Y-H et al. Microbulbifer donghaiensis sp. nov., isolated from marine sediment of the East China Sea. Int J Syst Evol Microbiol 2009; 59:545–549 [View Article]
    [Google Scholar]
  5. Yoon JH, Jung SY, Kang SJ, Oh TK. Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2007; 57:2365–2369 [View Article]
    [Google Scholar]
  6. Nishijima M, Takadera T, Imamura N, Kasai H, An K-D et al. Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 2009; 59:1696–1707 [View Article]
    [Google Scholar]
  7. Lee J-Y, Kim PS, Hyun D-W, Kim HS, Shin N-R et al. Microbulbifer echini sp. nov., isolated from the gastrointestinal tract of a purple sea urchin, Heliocidaris crassispina. Int J Syst Evol Microbiol 2017; 67:998–1004 [View Article]
    [Google Scholar]
  8. Park S, Yoon SY, Ha MJ, Yoon JH. Microbulbifer aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:1436–1441 [View Article]
    [Google Scholar]
  9. Moh TH, Furusawa G, Amirul A-A. Microbulbifer aggregans sp. nov., isolated from estuarine sediment from a mangrove forest. Int J Syst Evol Microbiol 2017; 67:4089–4094 [View Article]
    [Google Scholar]
  10. Zhang D-S, Huo Y-Y, Xu X-W, Wu Y-H, Wang C-S et al. Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2012; 62:505–510 [View Article]
    [Google Scholar]
  11. Baba A, Miyazaki M, Nagahama T, Nogi Y. Microbulbifer chitinilyticus sp. nov. and Microbulbifer okinawensis sp. nov., chitin-degrading bacteria isolated from mangrove forests. Int J Syst Evol Microbiol 2011; 61:2215–2220 [View Article]
    [Google Scholar]
  12. Yoon J-H, Kim H, Kang KH, Oh T-K, Park Y-H. Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 2003; 53:1357–1361 [View Article]
    [Google Scholar]
  13. Xiong Q, Wang D, Dong X, Liu D, Liu Y et al. Microbulbifer flavimaris sp. nov., a halophilic Gammaproteobacteria isolated from marine sediment of the Yellow Sea, China. Int J Syst Evol Microbiol 2019; 69:1135–1141 [View Article]
    [Google Scholar]
  14. Williams ST, Davies FL. Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 1965; 38:251–261 [View Article]
    [Google Scholar]
  15. Zhang X-Q, Wu Y-H, Zhou X, Zhang X, Xu X-W et al. Parvularcula flava sp. nov., an alphaproteobacterium isolated from surface seawater of the South China Sea. Int J Syst Evol Microbiol 2016; 66:3498–3502 [View Article]
    [Google Scholar]
  16. Shi XL, Wu YH, Jin XB, Wang CS, Xu XW. Alteromonas lipolytica sp. nov., a poly-beta-hydroxybutyrate-producing bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2017; 67:237–242 [View Article]
    [Google Scholar]
  17. Huang M-M, Guo L-L, Wu Y-H, Lai Q-L, Shao Z-Z et al. Pseudooceanicola lipolyticus sp. nov., a marine alphaproteobacterium, reclassification of Oceanicola flagellatus as Pseudooceanicola flagellatus comb. nov. and emended description of the genus Pseudooceanicola. Int J Syst Evol Microbiol 2018; 68:409–415 [View Article]
    [Google Scholar]
  18. Huang H, Mo K, Hu Y, Liu M, Zhu J et al. Microbulbifer harenosus sp. nov., an alginate-degrading bacterium isolated from coastal sand. Int J Syst Evol Microbiol 2020; 70:1639–1643 [View Article] [PubMed]
    [Google Scholar]
  19. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184 [View Article]
    [Google Scholar]
  20. Kong Y-H, Sun C, Guo L-L, Xu L, Wu Y-H et al. Alterinioella nitratireducens gen. nov., sp. nov., isolated from seawater in the West Pacific Ocean. Curr Microbiol 2021; 78:2455–2463 [View Article]
    [Google Scholar]
  21. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  22. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  23. Komagata K, Susuki K. Lipid and cell-wall systematics in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  25. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article] [PubMed]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  27. Sun C, Fu G-Y, Zhang C-Y, Hu J, Xu L et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016; 82:2975–2987 [View Article]
    [Google Scholar]
  28. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  33. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article]
    [Google Scholar]
  34. Jeong SH, Yang S-H, Jin HM, Kim JM, Kwon KK et al. Microbulbifer gwangyangensis sp. nov. and Microbulbifer pacificus sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2013; 63:1335–1341 [View Article]
    [Google Scholar]
  35. Vashist P, Nogi Y, Ghadi SC, Verma P, Shouche YS. Microbulbifer mangrovi sp. nov., a polysaccharide-degrading bacterium isolated from an Indian mangrove. Int J Syst Evol Microbiol 2013; 63:2532–2537 [View Article]
    [Google Scholar]
  36. Yoon JH, Kim IG, Oh TK, Park YH. Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 2004; 54:1111–1116 [View Article]
    [Google Scholar]
  37. Camacho M, Del Carmen Montero-Calasanz M, Redondo-Gómez S, Rodríguez-Llorente I, Schumann P et al. Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016; 66:1844–1850 [View Article]
    [Google Scholar]
  38. Tang S-K, Wang Y, Cai M, Lou K, Mao P-H et al. Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol 2008; 58:2036–2040 [View Article]
    [Google Scholar]
  39. Kämpfer P, Arun AB, Young C-C, Rekha PD, Martin K et al. Microbulbifer taiwanensis sp. nov., isolated from coastal soil. Int J Syst Evol Microbiol 2012; 62:2485–2489 [View Article]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  41. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005842
Loading
/content/journal/ijsem/10.1099/ijsem.0.005842
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error