1887

Abstract

Strain RHs26 is an aerobic, Gram-stain-negative, non-flagellated and rod- or filamentous-shaped (1.0–1.1×2.3–50 µm) bacterium that was isolated from dried rice husk. It was positive for oxidase and catalase, hydrolysed starch and Tween 80, and weakly hydrolysed CM-cellulose. The strain grew at temperatures between 10 and 37 °C (optimum, 28 °C), in 0–1 % NaCl (optimum, 0 %) and at pH 6.0–9.0 (optimum, pH 7.0–8.0). The predominant membrane fatty acids were summed feature 3 (C 7 and/or C 6), C 5, iso-C and iso-C 3-OH. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid, two unidentified aminophospholipids and two unidentified lipids. The predominant quinone was menaquinone MK-7. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain RHs26 belongs to the genus , presenting the highest sequence similarity to S7-3-3 (95.8 %). The genomic DNA G+C content of strain RHs26 was 49.5 %. Strain RHs26 showed the highest orthologous average nucleotide identity (OrthoANI) and digital DNA–DNA hybridization (dDDH) values of 76.4 % and 20.0 % with KCTC 52727 while sharing OrthoANI and dDDH values of 74.6 % and 19.2 % with KCTC 52035, the closest relative in the phylogenomic tree. Based on the results of a polyphasic taxonomic study, strain RHs26 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is RHs26 (=JCM 35224=KACC 17318).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005837
2023-04-20
2024-04-25
Loading full text...

Full text loading...

References

  1. Migula W. Über ein neues System der Bakterien. In Klein L, Migula W. eds Arbeiten Aus Dem Bakteriologischen Institut Der Technischen Hochschule Zu Karlsruhe Nemnich; 1894 pp 235–238
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  3. Won M, Hong SB, Han BH, Kwon SW. Spirosoma rhododendri sp. nov., isolated from a flower of royal azalea (Rhododendron schlippenbachii). Int J Syst Evol Microbiol 2022; 72:5306 [View Article]
    [Google Scholar]
  4. Finster KW, Herbert RA, Lomstein BA. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2009; 59:839–844 [View Article]
    [Google Scholar]
  5. Ahn J-H, Weon H-Y, Kim S-J, Hong S-B, Seok S-J et al. Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 2014; 64:3230–3234 [View Article]
    [Google Scholar]
  6. Spratt BG, Pardee AB. Penicillin-binding proteins and cell shape in E. coli. Nature 1975; 254:516–517 [View Article]
    [Google Scholar]
  7. Popham DL, Young KD. Role of penicillin-binding proteins in bacterial cell morphogenesis. Curr Opin Microbiol 2003; 6:594–599 [View Article] [PubMed]
    [Google Scholar]
  8. Spratt BG, Cromie KD. Penicillin-binding proteins of gram-negative bacteria. Rev Infect Dis 1988; 10:699–711 [View Article] [PubMed]
    [Google Scholar]
  9. Lail K, Sikorski J, Saunders E, Lapidus A, Glavina Del Rio T et al. Complete genome sequence of Spirosoma linguale type strain (1T). Stand Genomic Sci 2010; 2:176–185 [View Article]
    [Google Scholar]
  10. Maeda T, Kotani H, Furusawa C. Morphological change of coiled bacterium Spirosoma linguale with acquisition of β-lactam resistance. Sci Rep 2021; 11:1–9 [View Article]
    [Google Scholar]
  11. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Son; 1991 pp 115–175
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  18. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985; 22:160–174 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  20. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article]
    [Google Scholar]
  22. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article]
    [Google Scholar]
  23. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  24. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  25. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  27. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  28. Igo MJ, Schaffner DW. Quantifying the influence of relative humidity, temperature, and diluent on the survival and growth of Enterobacter aerogenes. J Food Prot 2019; 82:2135–2147 [View Article]
    [Google Scholar]
  29. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article] [PubMed]
    [Google Scholar]
  30. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758 [View Article] [PubMed]
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray R, Woods W, Krieg N. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  32. Sasser M. Identification of bacteria bygas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Goodfellow M, O’Donnell AG. Chemical Methods in Prokaryotic Systematics Wiley; 1994
    [Google Scholar]
  35. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  36. Ten LN, Okiria J, Lee J-J, Lee S-Y, Park S et al. Spirosoma terrae sp. nov., isolated from soil from Jeju Island, Korea. Curr Microbiol 2018; 75:492–498 [View Article]
    [Google Scholar]
  37. Maeng S, Park Y, Han JH, Lee SE, Zhang J et al. Spirosoma aureum sp. nov., and Hymenobacter russus sp. nov., radiation-resistant bacteria in Cytophagales order isolated from soil. Antonie van Leeuwenhoek 2020; 113:2201–2212 [View Article]
    [Google Scholar]
  38. Rojas J, Ambika Manirajan B, Ratering S, Suarez C, Geissler-Plaum R et al. Spirosoma endbachense sp. nov., isolated from a natural salt meadow. Int J Syst Evol Microbiol 2021; 71:004601 [View Article] [PubMed]
    [Google Scholar]
  39. Li W, Lee SY, Kang IK, Ten LN, Jung HY. Spirosoma agri sp. nov., isolated from apple orchard soil. Curr Microbiol 2018; 75:694–700 [View Article]
    [Google Scholar]
  40. Li Y, Ai MJ, Sun Y, Zhang YQ, Zhang JQ. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int J Syst Evol Microbiol 2017; 67:3144–3149 [View Article]
    [Google Scholar]
  41. Joo ES, Lee J-J, Cha S, Jheong W, Seo T et al. Spirosoma pulveris sp. nov., a bacterium isolated from a dust sample collected at Chungnam province, South Korea. J Microbiol 2015; 53:750–755 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005837
Loading
/content/journal/ijsem/10.1099/ijsem.0.005837
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error