1887

Abstract

Two Gram-positive, aerobic and non-motile actinomycetes, designated S1-96 and N2-109, were isolated from soils collected from a cotton field. They are described as representing two novel species of genera and through a polyphasic approach. Analysis of 16S rRNA gene sequences revealed that strains S1-96 and N2-109 showed highest similarity to CGMCC 4.4663 (99.10 %) and BNT558 (98.21 %), respectively. Phylogenetic analyses based on 16S rRNA and core genes confirmed the close relationships of these strains. Genomic analyses further supported the novel taxonomic delimitation of these two species based on digital DNA–DNA hybridization and average nucleotide identity. Strains S1-96 and N2-109 contained MK-9(H) and MK-9(H) as the most abundant menaquinone, respectively. High abundances of iso-fatty acids were detected in both strains, which was similar to their close relatives. Physiological and polar lipid analyses also revealed differences between these strains and their phylogenetic neighbours, supporting their taxonomic delimitation as novel species. The names sp. nov. (type strain S1-96=JCM 34412=CGMCC 4.7707) and sp. nov. (type strain N2-109=JCM 34628=CGMCC 4.7717) are proposed.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 32202121)
    • Principle Award Recipient: WenzhengLiu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005832
2023-04-17
2024-03-29
Loading full text...

Full text loading...

References

  1. Embley MT, Smida J, Stackebrandt E. The phylogeny of mycolate-less wall chemotype IV actinomycetes and description of Pseudonocardiaceae fam. nov. Syst Appl Microbiol 1988; 11:44–52 [View Article]
    [Google Scholar]
  2. Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2011; 61:1259–1264 [View Article]
    [Google Scholar]
  3. Indananda C, Matsumoto A, Inahashi Y, Takahashi Y, Duangmal K et al. Actinophytocola oryzae gen. nov., sp. nov., isolated from the roots of Thai glutinous riceplants, a new member of the family Pseudonocardiaceae. Int J Syst Evol Microbiol 2010; 60:1141–1146 [View Article]
    [Google Scholar]
  4. Sun HM, Zhang T, Yu LY, Lu XX, Mou XZ et al. Actinophytocola gilvus sp. nov., isolated from desert soil crusts, and emended description of the genus Actinophytocola Indananda et al. 2010. Int J Syst Evol Microbiol 2014; 64:3120–3125 [View Article]
    [Google Scholar]
  5. Guo X, Qiu D, Ruan J, Huang Y. Actinophytocola xinjiangensis sp. nov., isolated from virgin forest soil. Int J Syst Evol Microbiol 2011; 61:2928–2932 [View Article]
    [Google Scholar]
  6. Otoguro M, Yamamura H, Tamura T, Irzaldi R, Ratnakomala S et al. Actinophytocola timorensis sp. nov. and Actinophytocola corallina sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:834–838 [View Article]
    [Google Scholar]
  7. Ara I, Tsetseg B, Daram D, Suto M, Ando K. Actinophytocola burenkhanensis sp. nov., isolated from Mongolian soil. Int J Syst Evol Microbiol 2011; 61:1033–1038 [View Article]
    [Google Scholar]
  8. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article]
    [Google Scholar]
  9. Bouznada K, Bouras N, Schumann P, Spröer C, Sabaou N et al. Actinophytocola algeriensis sp. nov., an actinobacterium isolated from Saharan soil. Int J Syst Evol Microbiol 2016; 66:2760–2765 [View Article]
    [Google Scholar]
  10. Zhang D-F, Jiang Z, Zhang X-M, Yang L-L, Tian X-P et al. Actinophytocola sediminis sp. nov., an actinomycete isolated from a marine sediment. Int J Syst Evol Microbiol 2014; 64:2834–2840 [View Article]
    [Google Scholar]
  11. Cao C, Sun Y, Wu B, Zhao S, Yuan B et al. Actinophytocola glycyrrhizae sp. nov. isolated from the rhizosphere of Glycyrrhiza inflata. Int J Syst Evol Microbiol 2018; 68:2504–2508 [View Article]
    [Google Scholar]
  12. Wang W, Wang B, Meng H, Xing Z, Lai Q et al. Actinophytocola xanthii sp. nov., an actinomycete isolated from rhizosphere soil of the plant Xanthium sibiricum. Int J Syst Evol Microbiol 2017; 67:1152–1157 [View Article]
    [Google Scholar]
  13. Waksman SA, Henrici AT. The nomenclature and classification of the Actinomycetes. J Bacteriol 1943; 46:337–341 [View Article]
    [Google Scholar]
  14. Witt D, Stackebrandt E. Unification of the genera Streptoverticillum and Streptomyces, and amendation of Streptomyces Waksman and Henrici 1943, 339AL. Syst Appl Microbiol 1990; 13:361–371 [View Article]
    [Google Scholar]
  15. Wellington EMH, Stackebrandt E, Sanders D, Wolstrup J, Jorgensen NOG. Taxonomic status of Kitasatosporia, and proposed unification with Streptomyces on the basis of phenotypic and 16S rRNA analysis and emendation of Streptomyces Waksman and Henrici 1943, 339AL. Int J Syst Bacteriol 1992; 42:156–160 [View Article]
    [Google Scholar]
  16. Bérdy J. Bioactive microbial metabolites. J Antibiot 2005; 58:1–26 [View Article]
    [Google Scholar]
  17. Goodfellow M, Fiedler HP. A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 2010; 98:119–142 [View Article]
    [Google Scholar]
  18. Wang J, Zhang Q, Wang Y, Qin S, Luo X. Streptomyces aqsuensis sp. nov., isolated from ditch sediment in Xinjiang, China. Int J Syst Evol Microbiol 2018; 68:2178–2182 [View Article]
    [Google Scholar]
  19. Otoguro M, Ratnakomala S, Lestari Y, Hastuti RD, Triana E et al. Streptomyces baliensis sp. nov., isolated from balinese soil. Int J Syst Evol Microbiol 2009; 59:2158–2161 [View Article]
    [Google Scholar]
  20. Zhang L, Ruan C, Peng F, Deng Z, Hong K. Streptomyces arcticus sp. nov., isolated from frozen soil. Int J Syst Evol Microbiol 2016; 66:1482–1487 [View Article] [PubMed]
    [Google Scholar]
  21. Al-Bari MAA, Bhuiyan MSA, Flores ME, Petrosyan P, García-Varela M et al. Streptomyces bangladeshensis sp. nov., isolated from soil, which produces bis-(2-ethylhexyl)phthalate. Int J Syst Evol Microbiol 2005; 55:1973–1977 [View Article]
    [Google Scholar]
  22. Ray L, Mishra SR, Panda AN, Rastogi G, Pattanaik AK et al. Streptomyces barkulensis sp. nov., isolated from an estuarine lake. Int J Syst Evol Microbiol 2014; 64:1365–1372 [View Article]
    [Google Scholar]
  23. Amin A, Ahmed I, Khalid N, Osman G, Khan IU et al. Streptomyces caldifontis sp. nov., isolated from a hot water spring of Tatta Pani, Kotli, Pakistan. Antonie van Leeuwenhoek 2017; 110:77–86 [View Article]
    [Google Scholar]
  24. Hopkins DW, Macnaughton SJ, O’Donnell AG. A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 1991; 23:217–225 [View Article]
    [Google Scholar]
  25. Rhodes J, Beale MA, Fisher MC. Illuminating choices for library prep: a comparison of library preparation methods for whole genome sequencing of cryptococcus neoformans using illumina HiSeq. PLoS One 2014; 9:e113501 [View Article]
    [Google Scholar]
  26. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article]
    [Google Scholar]
  27. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article]
    [Google Scholar]
  28. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article]
    [Google Scholar]
  29. Lin SH, Liao YC. CISA: contig integrator for sequence assembly of bacterial genomes. PLoS One 2013; 8:e60843 [View Article] [PubMed]
    [Google Scholar]
  30. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article] [PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  32. Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 2016; 33:1635–1638 [View Article]
    [Google Scholar]
  33. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article] [PubMed]
    [Google Scholar]
  34. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 1997; 14:685–695 [View Article] [PubMed]
    [Google Scholar]
  35. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  36. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–5 [View Article]
    [Google Scholar]
  37. Kim J, Na SI, Kim D, Chun J. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol 2021; 59:609–615
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  40. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340
    [Google Scholar]
  41. Yang L, Wu H, Qiu W, Guo L, Du X et al. Pulsatilla decoction inhibits Candida albicans proliferation and adhesion in a mouse model of vulvovaginal candidiasis via the Dectin-1 signaling pathway. J Ethnopharmacol 2018; 223:51–62 [View Article]
    [Google Scholar]
  42. Bruce RA, Achenbach LA, Coates JD. Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ Microbiol 1999; 1:319–329 [View Article] [PubMed]
    [Google Scholar]
  43. Buchanan RE. Atlas of bacterial flagellation. Arch Biochem Biophys 1960; 89:330 [View Article]
    [Google Scholar]
  44. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article]
    [Google Scholar]
  45. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article]
    [Google Scholar]
  46. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  47. Zhang YQ, Yu LY, Wang D, Liu HY, Sun CH et al. Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 2008; 58:2070–2074 [View Article]
    [Google Scholar]
  48. Tsukamura M, Mizuno S. Differentiation of Mycobacterium avium and Mycobacterium intracellulare by utilization of butanols as carbon source. Comparison between Japan isolates and the United States isolates of M. intracellulare. Kekkaku 1971; 46:197–202
    [Google Scholar]
  49. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  50. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. eds Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007 pp 330–393
    [Google Scholar]
  51. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  52. Tian X-P, Xu Y, Zhang J, Li J, Chen Z et al. Streptomyces oceani sp. nov., a new obligate marine actinomycete isolated from a deep-sea sample of seep authigenic carbonate nodule in South China Sea. Antonie van Leeuwenhoek 2012; 102:335–343 [View Article]
    [Google Scholar]
  53. Sasser M. Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 2001
    [Google Scholar]
  54. Tatar D, Guven K, Spröer C, Klenk HP, Sahin N. Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern. Int J Syst Evol Microbiol 2014; 64:3126–3133 [View Article]
    [Google Scholar]
  55. Tian XP, Zhang YQ, Li QX, Zhi XY, Tang SK et al. Streptomyces nanshensis sp. nov., isolated from the Nansha Islands in the South China Sea. Int J Syst Evol Microbiol 2009; 59:745–749 [View Article]
    [Google Scholar]
  56. Zhao GZ, Li J, Qin S, Huang HY, Zhu WY et al. Streptomyces artemisiae sp. nov., isolated from surface-sterilized tissue of artemisia annua L. Int J Syst Evol Microbiol 2010; 60:27–32 [View Article]
    [Google Scholar]
  57. Carro L, Zúñiga P, de la Calle F, Trujillo ME. Streptomyces pharmamarensis sp. nov. isolated from a marine sediment. Int J Syst Evol Microbiol 2012; 62:1165–1170 [View Article]
    [Google Scholar]
  58. Hu H, Lin HP, Xie Q, Li L, Xie XQ et al. Streptomyces qinglanensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2012; 62:596–600 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005832
Loading
/content/journal/ijsem/10.1099/ijsem.0.005832
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error