Skip to content
1887

Abstract

A novel sulphate-reducing bacterium, strain SYK, was isolated from a xenic culture of an anaerobic protist obtained from a sulphidogenic sediment of the saline Lake Hiruga in Fukui, Japan. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that SYK clustered with the members of the genus . The closest relative of strain SYK was SF6, with 16S rRNA gene sequence identity of 97.43 %. Digital DNA–DNA hybridisation and average nucleotide identity values between SYK and species of the genus fell below the respective thresholds for species delineation, indicating that SYK represents a novel species of the genus . Cells measured 1.7–3.7×0.2–0.5 µm in size and were Gram-stain-negative, obligately anaerobic, motile by means of a single polar flagellum and had a curved rod or sigmoid shape. Cell growth was observed under saline conditions from pH 6.0 to 9.5 (optimum pH 8.0–9.0) and at a temperature of 10–30 °C (optimum 25 °C). SYK used lactate, pyruvate, fumarate, formate and H as electron donors. It used sulphate, sulphite, thiosulphate and sulphur as terminal electron acceptors. Pyruvate and fumarate were fermented. Major cellular fatty acids were anteiso-C, C, anteiso-Cω9, summed feature 3 (Cω6 and/or Cω7) and summed feature 8 (Cω7 and/or Cω6). The DNA G+C content of SYK was 49.4 mol%. On the basis of the the genetic and phenotypic features, SYK was determined to represent a novel species of the genus for which the name sp. nov. is proposed with type strain SYK (=DSM 114958=JCM 35746).

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science (Award 19K06212)
    • Principle Award Recipient: RyujiKondo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005826
2023-04-28
2025-01-16
Loading full text...

Full text loading...

References

  1. Postgate JR. The Sulphate-Reducing Bacteria, 2nd ed. Cambridge: Cambridge University Press; 1984 p 208
    [Google Scholar]
  2. Widdel F. Microbiology and ecology of sulfate- and sulfur reducing bacteria. In Zehnder AJB. eds Biology of Anaerobic Microorganisms New York: John Wiley & Sons, Inc; 1988 pp 469–585
    [Google Scholar]
  3. Sato T, Hongoh Y, Noda S, Hattori S, Ui S et al. Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 2009; 11:1007–1015 [View Article]
    [Google Scholar]
  4. Rabus R, Hansen TA, Widdel F. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. eds The Prokaryotes, 3rd ed. vol 2 New York: Springer; 2006 pp 659–768
    [Google Scholar]
  5. Cao J, Gayet N, Zeng X, Shao Z, Jebbar M et al. Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 2016; 66:3904–3911 [View Article]
    [Google Scholar]
  6. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972–6016 [View Article] [PubMed]
    [Google Scholar]
  7. Park MJ, Kim YJ, Park M, Yu J, Namirimu T et al. Establishment of genome based criteria for classification of the family Desulfovibrionaceae and proposal of two novel genera, Alkalidesulfovibrio gen. nov. and Salidesulfovibrio gen. nov. Front Microbiol 2022; 13:738205 [View Article]
    [Google Scholar]
  8. Kataoka T, Kondo R. Protistan community composition in anoxic sediments from three salinity-disparate Japanese lakes. Estuar Coast Shelf Sci 2019; 224:34–42 [View Article]
    [Google Scholar]
  9. Kondo R, Okamura T. Growth and grazing kinetics of the facultative anaerobic nanoflagellate, Suigetsumonas clinomigrationis. Microbes Environ 2017; 32:80–83 [View Article]
    [Google Scholar]
  10. Okamura T, Mori Y, Nakano S, Kondo R. Abundance and bacterivory of heterotrophic nanoflagellates in the meromictic Lake Suigetsu, Japan. Aquat Microb Ecol 2012; 66:149–158 [View Article]
    [Google Scholar]
  11. Okamura T, Kondo R. Suigetsumonas clinomigrationis gen. et sp. nov., a novel facultative anaerobic nanoflagellate isolated from the meromictic Lake Suigetsu, Japan. Protist 2015; 166:409–421 [View Article]
    [Google Scholar]
  12. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7:203–214 [View Article] [PubMed]
    [Google Scholar]
  13. Zou B-Z, Takeda K, Tonouchi A, Akada S, Fujita T. Characteristics of an anaerobic, syntrophic, butyrate-degrading bacterium in paddy field soil. Biosci Biotechnol Biochem 2003; 67:2059–2067 [View Article] [PubMed]
    [Google Scholar]
  14. Tanaka N, Nagata N, Ooshige T, Takasaki M. The usability of a simple Gram stain procedure (Nishioka’s method). Nihon Shuchu Chiryo Igakukai zasshi J Jpn Soc Intensive Care Med 1997; 4:383 [View Article]
    [Google Scholar]
  15. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article]
    [Google Scholar]
  16. Kondo R, Kitada H, Kawai A, Hata Y. Low molecular fatty acids in the marine sediments of eutrophic coastal regions. Nippon Suisan Gakkaishi 1990; 56:519–523 [View Article]
    [Google Scholar]
  17. Kondo R, Momoki M, Yamamoto M, Kaneda A. Spatiotemporal shift in sulphide concentration in hypolimnic water column in Lake Hiruga, a saline lake in Japan. Limnology 2018; 19:277–283 [View Article]
    [Google Scholar]
  18. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
  19. Kondo R, Yoshida T, Yuki Y, Hiroishi S. DNA–DNA reassociation among a bloom-forming cyanobacterial genus, Microcystis. Int J Syst Evol Microbiol 2000; 50 Pt 2:767–770 [View Article]
    [Google Scholar]
  20. Kondo R, Kataoka T. Whole-genome sequence of a sulphate-reducing bacterial strain SYK isolated from a xenic culture of an anaerobic protist. Microbiol Resour Announc 2023; 12:e0125722 [View Article] [PubMed]
    [Google Scholar]
  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  22. Pradel N, Ji B, Gimenez G, Talla E, Lenoble P et al. The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus. PLoS One 2013; 8:e55130 [View Article]
    [Google Scholar]
  23. Kataoka T, Kondo R. Genome sequence of the sulfate-reducing bacterium Pseudodesulfovibrio portus JCM 14722T. Microbiol Resour Announc 2022; 11:e0094722 [View Article]
    [Google Scholar]
  24. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article]
    [Google Scholar]
  26. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  27. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 1997; 47:515–521 [View Article]
    [Google Scholar]
  28. Frolova AA, Merkel AY, Kuchierskaya AA, Bonch-Osmolovskaya EA, Slobodkin AI. Pseudodesulfovibrio alkaliphilus, sp. nov., an alkaliphilic sulfate-reducing bacterium isolated from a terrestrial mud volcano. Antonie van Leeuwenhoek 2021; 114:1387–1397 [View Article]
    [Google Scholar]
  29. Musto H, Naya H, Zavala A, Romero H, Alvarez-Valín F et al. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett 2004; 573:73–77 [View Article] [PubMed]
    [Google Scholar]
  30. Hu EZ, Lan XR, Liu ZL, Gao J, Niu DK. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 2022; 23:110 [View Article] [PubMed]
    [Google Scholar]
  31. Takahashi A, Kojima H, Watanabe M, Fukui M. Pseudodesulfovibrio sediminis sp. nov., a mesophilic and neutrophilic sulfate-reducing bacterium isolated from sediment of a brackish lake. Arch Microbiol 2022; 204:307 [View Article]
    [Google Scholar]
  32. Suzuki D, Ueki A, Amaishi A, Ueki K. Desulfovibrio portus sp. nov., a novel sulfate-reducing bacterium in the class Deltaproteobacteria isolated from an estuarine sediment. J Gen Appl Microbiol 2009; 55:125–133 [View Article]
    [Google Scholar]
  33. Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV et al. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 2011; 77:3938–3951 [View Article]
    [Google Scholar]
  34. Gilmour CC, Soren AB, Gionfriddo CM, Podar M, Wall JD et al. Pseudodesulfovibrio mercurii sp. nov., a mercury-methylating bacterium isolated from sediment. Int J Syst Evol Microbiol 2019; 71:3 [View Article] [PubMed]
    [Google Scholar]
  35. Ranchou-Peyruse M, Goñi-Urriza M, Guignard M, Goas M, Ranchou-Peyruse A et al. Pseudodesulfovibrio hydrargyri sp. nov., a mercury-methylating bacterium isolated from a brackish sediment. Int J Syst Evol Microbiol 2018; 68:1461–1466 [View Article]
    [Google Scholar]
  36. Zheng R, Wu S, Sun C. Pseudodesulfovibrio cashew sp. nov., a novel deep-sea sulfate-reducing bacterium, linking heavy metal resistance and sulfur cycle. Microorganisms 2021; 9:429 [View Article]
    [Google Scholar]
  37. Khelaifia S, Fardeau ML, Pradel N, Aussignargues C, Garel M et al. Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 2011; 61:2706–2711 [View Article]
    [Google Scholar]
  38. Motamedi M, Pedersen K. Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int J Syst Bacteriol 1998; 48 Pt 1:311–315 [View Article]
    [Google Scholar]
  39. Ben Ali Gam Z, Oueslati R, Abdelkafi S, Casalot L, Tholozan JL et al. Desulfovibrio tunisiensis sp. nov., a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery. Int J Syst Evol Microbiol 2009; 59:1059–1063 [View Article]
    [Google Scholar]
  40. Sun B, Cole JR, Sanford RA, Tiedje JM. Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 2000; 66:2408–2413 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005826
Loading
/content/journal/ijsem/10.1099/ijsem.0.005826
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error