1887

Abstract

A novel rod-shaped, Gram-stain-positive, spore-forming and motile by peritrichous flagella strain, designated HJL G12, was isolated from the root of Chinese herb . Strain HJL G12 grew optimally at pH 7.0, 30 °C and in the presence of 1.0 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene and genomic sequences showed that HJL G12 clustered with NBRC 15958 and YH-JAE5 with 98.3 and 98.2 % sequence similarity. The DNA–DNA hybridization values between strain HJL G12 and the two reference strains were 23.6 % and 24.9 %, respectively. Menaquinone-7 was the only respiratory quinone and -diaminopimelic acid was present in the cell-wall peptidoglycan. Antesio-C and iso-C were detected to be the major cellular fatty acids. The cellular polar lipid profile contained diphosphatidyglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysyl-phospatidylglycerol and three unidentified aminophospholipids. Based on these results, strain HJL G12 is considered to represent a novel species within the genus , for which the name sp. nov. is proposed, with HJL G12 (=NBRC 115617=CGMCC 1.18520) as the type strain.

Funding
This study was supported by the:
  • Innovative Research Group Project of the National Natural Science Foundation of China (Award 32100305)
    • Principle Award Recipient: ShigangZheng
  • Key Research and Development Program of Sichuan Province (Award 2021YFYZ0012)
    • Principle Award Recipient: ZeChun
  • Key Research and Development Program of Sichuan Province (Award 2020YFN0001)
    • Principle Award Recipient: NotApplicable
  • Key Research and Development Program of Sichuan Province (Award 2021YFH0080)
    • Principle Award Recipient: RuoxiZhao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005824
2023-04-11
2024-07-25
Loading full text...

Full text loading...

References

  1. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article]
    [Google Scholar]
  2. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64:253–260 [View Article]
    [Google Scholar]
  3. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article]
    [Google Scholar]
  4. Ripa FA, Tong S, Cao W-D, Wang ET, Wang T et al. Paenibacillus rhizophilus sp. nov., a nitrogen-fixing bacterium isolated from the rhizosphere of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:3689–3695 [View Article] [PubMed]
    [Google Scholar]
  5. Zhang L, Gao J-S, Zhang S, Ali Sheirdil R, Wang X-C et al. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3053–3059 [View Article]
    [Google Scholar]
  6. Cha IT, Cho ES, Lee YK, Roh SW, Seo MJ. Paenibacillus psychroresistens sp. nov., isolated from the soil of an Arctic glacial retreat. J Microbiol 2019; 57:569–574 [View Article]
    [Google Scholar]
  7. Narsing Rao MP, Dong Z-Y, Kan Y, Zhang K, Fang B-Z et al. Description of Paenibacillus antri sp. nov. and Paenibacillus mesophilus sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 2020; 70:1048–1054 [View Article]
    [Google Scholar]
  8. Trinh NH, Kim J. Paenibacillus piri sp. nov., isolated from urban soil. Int J Syst Evol Microbiol 2020; 70:656–661 [View Article] [PubMed]
    [Google Scholar]
  9. Heo J, Kim SJ, Kim JS, Hong SB, Kwon SW. Paenibacillus protaetiae sp. nov., isolated from gut of larva of Protaetia brevitarsis seulensis. Int J Syst Evol Microbiol 2020; 70:989–994 [View Article]
    [Google Scholar]
  10. Yun JH, Lee JY, Kim PS, Jung MJ, Bae JW. Paenibacillus apis sp. nov. and Paenibacillus intestini sp. nov., isolated from the intestine of the honey bee Apis mellifera. Int J Syst Evol Microbiol 2017; 67:1918–1924 [View Article]
    [Google Scholar]
  11. Narsing Rao MP, Dong Z-Y, Kan Y, Dong L, Li S et al. Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int J Syst Evol Microbiol 2020; 70:1977–1981 [View Article] [PubMed]
    [Google Scholar]
  12. Zhou Y, Gao S, Wei D-Q, Yang L-L, Huang X et al. Paenibacillus thermophilus sp. nov., a novel bacterium isolated from a sediment of hot spring in Fujian province, China. Antonie van Leeuwenhoek 2012; 102:601–609 [View Article]
    [Google Scholar]
  13. Kim S-J, Cho H, Ahn J-H, Weon H-Y, Joa J-H et al. Paenibacillus nuruki sp. nov., isolated from Nuruk, a Korean fermentation starter. J Microbiol 2019; 57:836–841 [View Article]
    [Google Scholar]
  14. Velazquez LF, Rajbanshi S, Guan S, Hinchee M, Welsh A. Paenibacillus ottowii sp. nov. isolated from a fermentation system processing bovine manure. Int J Syst Evol Microbiol 2020; 70:1463–1469 [View Article] [PubMed]
    [Google Scholar]
  15. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article]
    [Google Scholar]
  16. Xiang W, Wang G, Wang Y, Yao R, Zhang F et al. Paenibacillus selenii sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol 2014; 64:2662–2667 [View Article]
    [Google Scholar]
  17. Chen C, Xin K, Liu H, Cheng J, Shen X et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 2017; 7:41564 [View Article]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article] [PubMed]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  21. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  25. Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F et al. Primer-initiated sequence synthesis to detect and assemble structural variants. Nat Methods 2010; 7:485–486 [View Article] [PubMed]
    [Google Scholar]
  26. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  27. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  28. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007; 35:W182–5 [View Article]
    [Google Scholar]
  29. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  32. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article]
    [Google Scholar]
  33. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article]
    [Google Scholar]
  34. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  37. Kong D, Zhang Q, Jiang X, Ma Q, Han X et al. Paenibacillus solisilvae sp. nov., isolated from birch forest soil. Int J Syst Evol Microbiol 2020; 70:2690–2695 [View Article] [PubMed]
    [Google Scholar]
  38. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article] [PubMed]
    [Google Scholar]
  39. MacKenzie SL. Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 1987; 70:151–160
    [Google Scholar]
  40. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  41. Gutierrez CK, Matsui GY, Lincoln DE, Lovell CR. Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 2009; 75:2253–2258 [View Article]
    [Google Scholar]
  42. Li L, Jiao Z, Hale L, Wu W, Guo Y. Disruption of gene pqqA or pqqB reduces plant growth promotion activity and biocontrol of crown gall disease by Rahnella aquatilis HX2. PLoS One 2014; 9:e115010 [View Article]
    [Google Scholar]
  43. Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 1962; 27:31–36 [View Article]
    [Google Scholar]
  44. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56 [View Article] [PubMed]
    [Google Scholar]
  45. Hu Y, Li H, Chen Y, Zhang Q, Zheng S et al.Paenibacillus dendrobii sp. nov., an indole-3-acetic acid-producing endophytic bacterium isolated from dendrobium nobile Figshare [View Article]
    [Google Scholar]
  46. Paek J, Bai L, Shin Y, Kim H, Kook J-K et al. Description of Paenibacillus dokdonensis sp. nov., a new bacterium isolated from soil. Int J Syst Evol Microbiol 2019; 71:71 [View Article]
    [Google Scholar]
  47. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 1997; 47:299–306 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005824
Loading
/content/journal/ijsem/10.1099/ijsem.0.005824
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error