1887

Abstract

A novel strain, designated as LRZ36, was isolated from deep-sea sediment (from a depth of 5400 m) from the Mariana Trench. Cells of this strain are rod-shaped, Gram-stain-negative, strictly aerobic and non-motile. Phylogenetic analysis of LRZ36 based on 16S rRNA gene sequences revealed a lineage in the family but distinct from the most closely related species CGMCC 1.17725, ‘’ KCTC 12094 and DSM 14790 with sequence identities of 99.4 %, 98.0 and 97.9 %, respectively. The genome of LRZ36 was 3.8 Mbp in size with a DNA G+C content of 64.8 %, containing 3623 predicted coding genes. LRZ36 showed average nucleotide identity values of 89.8 %, 78.7 and 78.5 % and digital DNA–DNA hybridization values of 38.9 %, 21.7 and 21.6 % with CGMCC 1.17725, ‘’ KCTC 12094 and DSM 14790, respectively. The major respiratory quinone was ubiquinone-10 (Q-10), and the predominant fatty acids were Cω7 (74.4 %) and C (12.1 %). The polar lipids in LRZ36 are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine, phosphatidylinositol mannoside, an unidentified aminophospholipid, three unidentified lipids, three unidentified phospholipids and two unidentified aminolipids. On the basis of genotypic and phenotypic evidence, LRZ36 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LRZ36 (= KCTC 92065 = GDMCC 1.2985=MCCC 1K07227).

Funding
This study was supported by the:
  • Qilu Youth Scholar Startup Funding of Shandong University
    • Principle Award Recipient: FuYan
  • Taishan Scholars Program of Shandong Province (Award tsqn201909049)
    • Principle Award Recipient: FuYan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005816
2023-04-11
2024-10-03
Loading full text...

Full text loading...

References

  1. Hoshino T, Doi H, Uramoto G-I, Wörmer L, Adhikari RR et al. Global diversity of microbial communities in marine sediment. PNAS 2020; 117:27587–27597 [View Article]
    [Google Scholar]
  2. Zhang F, Lin J, Zhan W. Variations in oceanic plate bending along the Mariana trench. Earth Planet Sci Lett 2014; 401:206–214 [View Article]
    [Google Scholar]
  3. Zhou Z, Lin J, Behn MD, Olive JA. Mechanism for normal faulting in the subducting plate at the Mariana Trench. Geophys Res Lett 2015; 42:4309–4317
    [Google Scholar]
  4. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol 2003; 57:369–394 [View Article]
    [Google Scholar]
  5. Amend JP, LaRowe DE. Ocean sediments-an enormous underappreciated microbial habitat. Microbe 2016; 11:427–432
    [Google Scholar]
  6. Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J et al. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 1998; 64:1510–1513 [View Article]
    [Google Scholar]
  7. Morita R. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria. Soc Gen Microbiol Symp Ser 1976279–298
    [Google Scholar]
  8. Takami H, Inoue A, Fuji F, Horikoshi K. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 1997; 152:279–285 [View Article] [PubMed]
    [Google Scholar]
  9. Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A et al. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS One 2018; 13:e0195102 [View Article]
    [Google Scholar]
  10. Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. PNAS 2015; 112:E1230–E1236 [View Article]
    [Google Scholar]
  11. Tarn J, Peoples LM, Hardy K, Cameron J, Bartlett DH. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front Microbiol 2016; 7:665 [View Article]
    [Google Scholar]
  12. Tian J, Fan L, Liu H, Liu J, Li Y et al. A nearly uniform distributional pattern of heterotrophic bacteria in the Mariana Trench interior. Deep Sea Research Part I 2018; 142:116–126 [View Article]
    [Google Scholar]
  13. Liu J, Zheng Y, Lin H, Wang X, Li M et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019; 7:1–13 [View Article]
    [Google Scholar]
  14. Denner EBM, Smith GW, Busse H-J, Schumann P, Narzt T et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 2003; 53:1115–1122 [View Article]
    [Google Scholar]
  15. Anderson CR, Davis RE, Bandolin NS, Baptista AM, Tebo BM. Analysis of in situ manganese(II) oxidation in the Columbia River and offshore plume: linking Aurantimonas and the associated microbial community to an active biogeochemical cycle. Environ Microbiol 2011; 13:1561–1576 [View Article]
    [Google Scholar]
  16. Anderson CR, Johnson HA, Caputo N, Davis RE, Torpey JW et al. Mn (II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. Appl Environ Microbiol 2009; 75:4130–4138 [View Article]
    [Google Scholar]
  17. Anderson C, Davis R, Tebo B. Localisation and functional analysis of a manganese oxidase protein from the marine Alpha-Proteobacterium Aurantimonas manganoxydans (Sp. SI85-9A1). In American Geophysical Union, Fall Meeting 2007, Abstracts Washington, DC, USA: American Geophysical Union; 2007 p B33A-0859 https://ui.adsabs.harvard.edu/abs/2007AGUFM.B33A0859A
    [Google Scholar]
  18. Kim SJ, Kim JG, Jung GY, Park J, Yang EJ. Draft genome sequence of Aurantimonas coralicida DM33-3 isolated from Amundsen Sea Polynya. Korean J Microbiol 2021; 57:116–118 [View Article]
    [Google Scholar]
  19. Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold L-M et al. Analysis of 1,000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria. Front Microbiol 2020; 11:468 [View Article]
    [Google Scholar]
  20. Rathsack K, Reitner J, Stackebrandt E, Tindall BJ. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 2011; 61:2722–2728 [View Article]
    [Google Scholar]
  21. Song L, Liu H, Sun Q, Dong X, Zhou Y. Aurantimonas marina sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  22. Li A-Z, Lin L-Z, Zhang M-X, Zhu H-H. Aurantimonas aggregata sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2017; 67:5056–5061 [View Article]
    [Google Scholar]
  23. Liu B-B, Wang H-F, Li Q-L, Zhou X-K, Zhang Y-G et al. Aurantimonas endophytica sp. nov., a novel endophytic bacterium isolated from roots of Anabasis elatior (C. A. Mey.) Schischk. Int J Syst Evol Microbiol 2016; 66:4112–4117 [View Article]
    [Google Scholar]
  24. Anderson CR, Dick G, Chu M-L, Cho J-C, Davis R et al. Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of Alpha-Proteobacteria from the order Rhizobiales. Geomicrobiol J 2009; 26:189–198 [View Article]
    [Google Scholar]
  25. Volpiano CG, Sant’Anna FH, Ambrosini A, de São José JFB, Beneduzi A et al. Genomic metrics applied to Rhizobiales (Hyphomicrobiales): species reclassification, identification of unauthentic genomes and false type strains. Front Microbiol 2021; 12:614957 [View Article]
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  27. Federhen S. The NCBI taxonomy database. Nucleic Acids Res 2012; 40:D136–D143 [View Article]
    [Google Scholar]
  28. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  31. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article] [PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  33. Winey M, Meehl JB, O’Toole ET, Giddings Jr TH. Conventional transmission electron microscopy. Mol Biol Cell 2014; 25:319–323 [View Article]
    [Google Scholar]
  34. Trump BF, Smuckler EA, Benditt EP. A method for staining epoxy sections for light microscopy. J Ultrastruct Res 1961; 5:343–348 [View Article]
    [Google Scholar]
  35. Prem Anand AA, Vennison SJ, Sankar SG, Gilwax Prabhu DI, Vasan PT et al. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci 2010; 10:107 [View Article]
    [Google Scholar]
  36. Ahmad W, Zheng Y, Li Y, Sun W, Hu Y et al. Marinobacter salinexigens sp. nov., a marine bacterium isolated from hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol 2020; 70:3794–3800 [View Article] [PubMed]
    [Google Scholar]
  37. Welch DF. Applications of cellular fatty acid analysis. Clin Microbiol Rev 1991; 4:422–438 [View Article] [PubMed]
    [Google Scholar]
  38. Minnikin D, O’Donnell A, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  39. Weon H-Y, Kim B-Y, Yoo S-H, Joa J-H, Lee KH et al. Aurantimonas ureilytica sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2007; 57:1717–1720 [View Article]
    [Google Scholar]
  40. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J et al. Short protocols in molecular biology. New York 1992; 275:28764–28773
    [Google Scholar]
  41. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  42. Ren Y, Yu G, Shi C, Liu L, Guo Q et al. Majorbio cloud: a one‐stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 2022e12 [View Article]
    [Google Scholar]
  43. Ioanna K, Joanna A, Natalia QO, Nawrocki EP, Elena R et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res 2017D1
    [Google Scholar]
  44. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article] [PubMed]
    [Google Scholar]
  45. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  46. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  47. Jian S-L, Xu L, Meng F-X, Sun C, Xu X-W. Euzebya pacifica sp. nov., a novel member of the class Nitriliruptoria. Int J Syst Evol Microbiol 2021; 71:004864 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005816
Loading
/content/journal/ijsem/10.1099/ijsem.0.005816
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error