1887

Abstract

Two Gram-stain-positive, aerobic, endospore-forming bacterial strains, isolated from the rhizosphere of were studied for their detailed taxonomic allocation. Based on 16S rRNA gene sequence similarity comparisons, both strains JJ-7 and JJ-60 were shown to be members of the genus . Strain JJ-7 was most closely related to the type strains of (99.6 %) and (98.7 %), and strain JJ-60 to (99.5 %). The 16S rRNA gene sequence similarities to all other species were ≤98.4 %. Both strains JJ-7 and JJ-60 showed 97.6 % 16S rRNA gene sequence similarity between each other. Genomic comparisons showed that the average nucleotide identity and digital DNA–DNA hybridization values to next related type strain genomes were always <94 and <56 %, respectively. The polar lipid profiles of both strains contain a number of phospholipids including diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, which is in accord with the genus . The major quinone was MK-7 in both strains. Major fatty acids were iso- and anteiso-branched. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strains JJ-7 and JJ-60 from the most closely related species. Thus, each strain represents a novel species of the genus , for which the names sp. nov. and sp. nov. are proposed, with JJ-7 (=CIP 111892=DSM 111785=LMG 32088=CCM 9087) and JJ-60 (=CIP 111894=DSM 111787=LMG 32090=CCM 9086) as the type strains, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005808
2023-04-04
2024-03-29
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1994; 64:253–260 [View Article] [PubMed]
    [Google Scholar]
  2. Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena M-H, Igual JM et al. Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 2013; 63:4433–4438 [View Article] [PubMed]
    [Google Scholar]
  3. Lai W-A, Hameed A, Lin S-Y, Hung M-H, Hsu Y-H et al. Paenibacillus medicaginis sp. nov. a chitinolytic endophyte isolated from a root nodule of alfalfa (Medicago sativa L.). Int J Syst Evol Microbiol 2015; 65:3853–3860 [View Article] [PubMed]
    [Google Scholar]
  4. Kittiwongwattana C, Thawai C. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 2015; 65:107–112 [View Article] [PubMed]
    [Google Scholar]
  5. Gao J, Lv F, Wang X, Qiu T, Yuan M et al. Paenibacillus wenxiniae sp. nov., a nifH gene -harbouring endophytic bacterium isolated from maize. Antonie van Leeuwenhoek 2015; 108:1015–1022 [View Article]
    [Google Scholar]
  6. Elo S, Suominen I, Kämpfer P, Juhanoja J, Salkinoja-Salonen M et al. Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 2001; 51:535–545 [View Article] [PubMed]
    [Google Scholar]
  7. Ma Y, Xia Z, Liu X, Chen S. Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol 2007; 57:6–11 [View Article] [PubMed]
    [Google Scholar]
  8. Kim B-C, Lee KH, Kim MN, Kim E-M, Rhee M-S et al. Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora. J Microbiol 2009; 47:530–535 [View Article] [PubMed]
    [Google Scholar]
  9. Kim B-C, Lee KH, Kim MN, Kim E-M, Min SR et al. Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. J Microbiol 2009; 47:699–704 [View Article] [PubMed]
    [Google Scholar]
  10. Hong YY, Ma YC, Zhou YG, Gao F, Liu HC et al. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. Int J Syst Evol Microbiol 2009; 59:2656–2661 [View Article] [PubMed]
    [Google Scholar]
  11. Beneduzi A, Costa PB, Parma M, Melo IS, Bodanese-Zanettini MH et al. Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 2010; 60:128–133 [View Article]
    [Google Scholar]
  12. Zhang J, Wang ZT, Yu HM, Ma Y. Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 2013; 63:1776–1781 [View Article] [PubMed]
    [Google Scholar]
  13. Zhang L, Gao J-S, Zhang S, Ali Sheirdil R, Wang X-C et al. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3053–3059 [View Article] [PubMed]
    [Google Scholar]
  14. Wang D, Jiang Y, Wei X, Lai H, Xue Q. Paenibacillus quercus sp. nov., isolated from rhizosphere of Quercus aliena var. acuteserrata. Antonie van Leeuwenhoek 2014; 105:1173–1178 [View Article] [PubMed]
    [Google Scholar]
  15. Son JS, Kang HU, Ghim SY. Paenibacillus dongdonensis sp. nov., isolated from rhizospheric soil of Elymus tsukushiensis. Int J Syst Evol Microbiol 2014; 64:2865–2870 [View Article] [PubMed]
    [Google Scholar]
  16. Han T-Y, Tong X-M, Wang Y-W, Wang H-M, Chen X-R et al. Paenibacillus populi sp. nov., a novel bacterium isolated from the rhizosphere of Populus alba. Antonie van Leeuwenhoek 2015; 108:659–666 [View Article]
    [Google Scholar]
  17. Liu Y, Zhai L, Wang R, Zhao R, Zhang X et al. Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 2015; 65:4533–4538 [View Article]
    [Google Scholar]
  18. Rivas R, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 2005; 55:743–746 [View Article] [PubMed]
    [Google Scholar]
  19. Rivas R, García-Fraile P, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 2006; 56:2777–2781 [View Article] [PubMed]
    [Google Scholar]
  20. Kämpfer P, Busse H-J, Kloepper JW, Hu C-H, McInroy JA et al. Paenibacillus cucumis sp. nov., isolated from a cucumber plant. Int J Syst Evol Microbiol 2016; 66:2599–2603 [View Article] [PubMed]
    [Google Scholar]
  21. Kämpfer P, Busse HJ, McInroy JA, Hu CH, Kloepper JW et al. Paenibacillus rhizoplanae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017; 67:1058–1063 [View Article]
    [Google Scholar]
  22. Kämpfer P, Busse H-J, McInroy JA, Hu C-H, Kloepper JW et al. Paenibacillus nebraskensis sp. nov., isolated from the root surface of field-grown maize. Int J Syst Evol Microbiol 2017; 67:4956–4961 [View Article] [PubMed]
    [Google Scholar]
  23. Kämpfer P, Busse H-J, McInroy JA, Clermont D, Criscuolo A et al. Paenibacillus allorhizosphaerae sp. nov., from soil of the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2021; 71:10 [View Article]
    [Google Scholar]
  24. Kämpfer P, Lipski A, Lamothe L, Clermont D, Criscuolo A et al. Paenibacillus allorhizoplanae sp. nov. from the rhizoplane of a Zea mays root. Arch Microbiol 2022; 204:630 [View Article]
    [Google Scholar]
  25. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article] [PubMed]
    [Google Scholar]
  26. Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  27. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article]
    [Google Scholar]
  28. Kämpfer P, Kroppenstedt RM. Pseudonocardia benzenivorans sp. nov. Int J Syst Evol Microbiol 2004; 54:749–751 [View Article] [PubMed]
    [Google Scholar]
  29. Denner EB, Paukner S, Kämpfer P, Moore ER, Abraham WR et al. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 2001; 51:827–841 [View Article] [PubMed]
    [Google Scholar]
  30. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 1990; 273:164–172 [View Article]
    [Google Scholar]
  31. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  32. Schauss T, Busse HJ, Golke J, Kämpfer P, Glaeser SP. Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 2015; 65:3746–3753 [View Article] [PubMed]
    [Google Scholar]
  33. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 2021; 38:3022–3027 [View Article] [PubMed]
    [Google Scholar]
  34. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci 1978; 75:4801–4805 [View Article]
    [Google Scholar]
  35. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article]
    [Google Scholar]
  36. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article]
    [Google Scholar]
  37. Ludwig W, Viver T, Westram R, Francisco Gago J, Bustos-Caparros E et al. Release LTP_12_2020, featuring a new ARB alignment and improved 16S rRNA tree for prokaryotic type strains. Syst Appl Microbiol 2021; 44:126218 [View Article] [PubMed]
    [Google Scholar]
  38. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article] [PubMed]
    [Google Scholar]
  39. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences Seattle: University of Washington; 2005
    [Google Scholar]
  40. Felsenstein J. Confidence limits of phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  41. Kämpfer P, Rosselló-Mora R, Falsen E, Busse H-J, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of “Paenibacillus hongkongensis” as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article]
    [Google Scholar]
  42. Harimanana A, Rakotondrasoa A, Rivoarilala LO, Criscuolo A, Opatowski L et al. Neonatal acquisition of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the community of a low-income country (NeoLIC): protocol for a household cohort study in Moramanga, Madagascar. BMJ Open 2022; 12:e061463 [View Article]
    [Google Scholar]
  43. Cherif-Silini H, Thissera B, Bouket AC, Saadaoui N, Silini A et al. Durum wheat stress tolerance induced by endophyte Pantoea agglomerans with genes contributing to plant functions and secondary metabolite arsenal. Int J Mol Sci 2019; 20:3989 [View Article]
    [Google Scholar]
  44. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article]
    [Google Scholar]
  45. Zhu S, Hegemann JD, Fage CD, Zimmermann M, Xie X et al. Insights into the Unique Phosphorylation of the Lasso Peptide Paeninodin. J Biol Chem 2016; 291:13662–13678 [View Article]
    [Google Scholar]
  46. Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Res Idea Outcome 2019; 5: [View Article]
    [Google Scholar]
  47. Criscuolo A. On the transformation of MinHash-based uncorrected distances into proper evolutionary distances for phylogenetic inference. F1000Res 2020; 9:1309 [View Article] [PubMed]
    [Google Scholar]
  48. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  49. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A. Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013; 63:4495–4501 [View Article] [PubMed]
    [Google Scholar]
  50. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  51. Liu H, Lu L, Wang S, Yu M, Cao X et al. Paenibacillus tianjinensis sp. nov., isolated from corridor air. Int J Syst Evol Microbiol 2021; 71:005158 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005808
Loading
/content/journal/ijsem/10.1099/ijsem.0.005808
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error